Faculty Research 1990 - 1999

Title

Cell-specific expression of tubby gene family members (tub, Tulp1,2, and 3) in the retina.

Document Type

Article

Publication Date

1999

Keywords

Apoptosis, Eye-Proteins, Gene-Expression, Immunoenzyme-Techniques, In-Situ-Hybridization, In-Situ-Nick-End-Labeling, Mice, Mice-Mutant-Strains, Photoreceptors-Vertebrate, Proteins, Retina, RNA-Messenger, SUPPORT-NON-U-S-GOVT, SUPPORT-U-S-GOVT-P-H-S

JAX Source

Invest Ophthalmol Vis Sci 1999 Oct; 40(11):2706-12.

Grant

EY11996/EY/NEI, CA34196/CA/NCI

Abstract

PURPOSE: The family of tubby-like proteins (TULPs), consisting of four family members, are all expressed in-the retina at varying levels. Mutations within two members, tub and TULP1, are known to lead to retinal degeneration in mouse and humans, respectively, suggesting the functional importance of this family of proteins in the retina. Despite a high degree of conservation in the carboxy-terminal region (e.g., putative functional domain of the genes) among family members, they are unable to compensate for one another. The purpose of this study was to provide a rationale for this lack of compensation by investigating the spatial distribution of tubby gene family members in the retina and to investigate the mechanism of photoreceptor cell death in tubby mice. METHODS: In situ hybridization using riboprobes specific for each tubby gene family member and immunohistochemistry for TUB and TULP1 were performed to determine their expression patterns in the retina of tubby and wild-type control mice. The terminal dUTP nick-end labeling (TUNEL) assay was performed to detect apoptotic cells in the retina of tubby and wild-type control mice. RESULTS: tub mRNA was found to be expressed throughout the retina, with highest expression in the ganglion cell layer (GCL) and photoreceptor cells. In contrast, Tulp1 expression was observed only in photoreceptor cells and Tulp3 mRNA was expressed at a moderate level only in the inner nuclear layer (INL) and GCL. The results of the immunohistochemical analysis paralleled those observed in the in situ studies. TUB immunoreactivity was most highly concentrated in the GCL, in the inner and outermost regions of the INL, in the outer plexiform layer (OPL), and in the inner segments of photoreceptor cells. Similarly, TULP1 immunoreactivity was observed in the OPL and inner segments of the photoreceptor cells. No differences in expression at the mRNA or protein level were observed for any of the molecules tested in tubby or wild-type mice. TUNEL-positive cells were detected in the ONL of tubby mice, whereas very few were seen in the same layer of age-matched control mice. CONCLUSIONS: Although all tubby gene family members are expressed in the retina, they each have different cell-specific expression patterns, which may account in part for their inability to compensate for the loss of one family member. The photoreceptor cell death in tubby mice occurs through an apoptotic mechanism, which is known to be the common final outcome of other forms of retinal degeneration.

Please contact the Joan Staats Library for information regarding this document.

Share

COinS