Title

Expression of genes involved in mammalian meiosis during the transition from egg to embryo.

Document Type

Article

Publication Date

2001

JAX Source

Mol Reprod Dev. 2001 Jun; 59(2):144-158

Abstract

The ooplasm of higher eukaryotes provides substances necessary for completing the last stages of meiosis and initiating the first mitotic division. These processes are firmly attuned to other events in the egg and newly formed embryo, such as switching from the use of maternal transcripts to the onset of zygotic transcription. In mammals little is known about the molecular mechanisms guiding this transition, largely due to the lack of information about genes expressed in the egg and early embryos. Studies of yeast mitosis have contributed much of what is known about the vertebrate cell cycle, and recent reports indicate that homologs of yeast DNA repair genes also function during mammalian gametogenesis. To examine whether this conservation can be expanded to include genes operative in oocyte meiosis, we performed a computer-based search for homologs of yeast genes that are induced during sporulation in C. elegans, Drosophila, and mammals. Results from this study suggest that yeast and higher eukaryotes share genes that coordinate the overall process of meiosis. However intriguing differences exist, reflecting the distinctive mechanisms governing the progression of meiosis in each organism. ESTs representing more than half of the mammalian homologs are present in mouse cDNA libraries that contains genes controlling the meiosis/mitosis transition. About 50% of these genes contain potential cis-elements for cytoplasmic polyadenylation in their 3'-UTR, suggesting the importance of controlled translation in the egg and zygote. Mol. Reprod. Dev. 59:144-158, 2001. Copyright 2001 Wiley-Liss, Inc.