Title

Modulation of unloading-induced bone loss in mice with altered ERK signaling.

Document Type

Article

Publication Date

2-2016

JAX Source

Mamm Genome 2016 Feb; 27(1-2):47-61.

PMID

26546009

Grant

NNX12AL25G (Nasa)

Abstract

Genetic variations mediate skeletal responsiveness to mechanical unloading, with individual space travelers exhibiting large variations in the extent of bone loss. We previously identified genomic regions harboring several hundred genes that can modulate the magnitude of skeletal adaptation to mechanical unloading. Here, bioinformatic filters aided in shortlisting 30 genes with bone-related and mechanoregulatory roles. The genes CD44, FGF2, NOD2, and Fas, all associated with ERK signaling, were then functionally tested in hindlimb-unloaded (HLU) knockout (KO) mice. Compared to their respective normally ambulating wildtype (WT) controls, all KO strains, except Fas mice, had lower trabecular bone volume, bone volume fraction, and/or trabecular number. For cortical bone and compared to ambulatory WT mice, CD44(-/-) had impaired properties while FGF2(-/-) showed enhanced indices. NOD2(-/-) and Fas(-/-) did not have a cortical phenotype. In all KO and WT groups, HLU resulted in impaired trabecular and cortical indices, primarily due to trabecular tissue loss and mitigation of cortical bone growth. The difference in trabecular separation between HLU and ambulatory controls was significantly greater in CD44(-/-) and NOD2(-/-) mice than in WT mice. In cortical bone, differences in cortical thickness, total pore volume, and cortical porosity between HLU and controls were aggravated in CD44(-/-) mice. In contrast, deletion of NOD2 and Fas genes mitigated the differences in Po.V between HLU and control mice. Together, we narrowed a previous list of QTL-derived candidate genes from over 300 to 30, and showed that CD44, NOD2, and Fas have distinct functions in regulating changes in trabecular and cortical bone indices during unloading. Mamm Genome 2016 Feb; 27(1-2):47-61.