Title

Genetic and Small Molecule Disruption of the AID/RAD51 Axis Similarly Protects Nonobese Diabetic Mice from Type 1 Diabetes through Expansion of Regulatory B Lymphocytes.

Document Type

Article

Publication Date

6-1-2017

JAX Source

J Immunol 2017 Jun 1; 198(11):4255-4267

PMID

28461573

Grant

DK-46266, DK-95735, OD-020351, CA138646, CA034196

Abstract

B lymphocytes play a key role in type 1 diabetes (T1D) development by serving as a subset of APCs preferentially supporting the expansion of autoreactive pathogenic T cells. As a result of their pathogenic importance, B lymphocyte-targeted therapies have received considerable interest as potential T1D interventions. Unfortunately, the B lymphocyte-directed T1D interventions tested to date failed to halt β cell demise. IgG autoantibodies marking humans at future risk for T1D indicate that B lymphocytes producing them have undergone the affinity-maturation processes of class switch recombination and, possibly, somatic hypermutation. This study found that CRISPR/Cas9-mediated ablation of the activation-induced cytidine deaminase gene required for class switch recombination/somatic hypermutation induction inhibits T1D development in the NOD mouse model. The activation-induced cytidine deaminase protein induces genome-wide DNA breaks that, if not repaired through RAD51-mediated homologous recombination, result in B lymphocyte death. Treatment with the RAD51 inhibitor 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid also strongly inhibited T1D development in NOD mice. The genetic and small molecule-targeting approaches expanded CD73(+) B lymphocytes that exert regulatory activity suppressing diabetogenic T cell responses. Hence, an initial CRISPR/Cas9-mediated genetic modification approach has identified the AID/RAD51 axis as a target for a potentially clinically translatable pharmacological approach that can block T1D development by converting B lymphocytes to a disease-inhibitory CD73(+) regulatory state. J Immunol 2017 Jun 1; 198(11):4255-4267.