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Abstract

Despite substantial evidence for sex differences in addiction epidemiology,

addiction-relevant behaviors and associated neurobiological phenomena, the

mechanisms and implications of these differences remain unknown. Genetic anal-

ysis in model organism is a potentially powerful and effective means of discover-

ing the mechanisms that underlie sex differences in addiction. Human genetic

studies are beginning to show precise risk variants that influence the mechanisms

of addiction but typically lack sufficient power or neurobiological mechanistic

access, particularly for the discovery of the mechanisms that underlie sex differ-

ences. Our thesis in this review is that genetic variation in model organisms are a

promising approach that can complement these investigations to show the biolog-

ical mechanisms that underlie sex differences in addiction.
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1 | INTRODUCTION

Sex and gender differences in many aspects of drug use, drug effect

and substance use disorders (SUDs) are well-documented, but the

biological mechanisms underlying these differences and their impli-

cations for risk, prevention and treatment are poorly understood.

Although human genetic studies remain the standard for esta-

blishing genetic etiology for a complex neuropsychiatric condition

like addiction, studies attempting to investigate sex-specific differ-

ences in processes of addiction largely lack the phenotypic

breadth, power and neural tissue access needed to discover the

underlying molecular mechanisms. In contrast, genetic studies in

model organisms benefit from lower sample size requirements, and

a wealth of in vivo technologies for research into mechanisms.

Model organism studies have showed or corroborated observa-

tions of sex and gender differences in addiction. Therefore, there is

potential for genetic mapping of these phenomena to identify

mechanisms of sex differences in addiction.

In this review, we highlight the epidemiological evidence for sex dif-

ferences in SUDs, the influence of the environment on such sex differ-

ences and the promise and challenge of genetic analysis for discovering

the biological mechanisms that underlie sex differences in addiction

through the use of human and model organism discovery genetics. We

highlight the major gender differences in phenomena related to SUDs,

and the progress made toward studying these phenomena in human

genetic and conventional model organisms studies. The literature on
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these phenomena is quite uneven with respect to the classes of drugs

investigated across species and genetic backgrounds but show some

general phenomena across classes of drugs. In other cases, the magni-

tude and direction of effects vary across strains and species. We have

chosen examples from the literature that reflect this diversity.

Overall, few human genetic studies have succeeded in identifying

sex-specific loci for addiction because of inadequate statistical power.

Although human genetic studies have been attempted for each major

class of drugs, these studies are few in number and sex differences have

been studied in even fewer. We have summarized these studies to call

attention to this dearth of results. We argue that model organism studies

show many sex differences in addiction-related phenomena, and that

with recent improvements to genetic analysis methods in model organ-

isms, these are now amenable to genetic investigation. Model organisms

have benefits of (a) increased minor allele frequency, (b) controlled

genetic background variation, (c) controlled environments, (d) fully

ascertained drug exposure histories and (e) access to neurobiological

intermediate phenotypes that serve to increase the observed effect size

of genetic loci, revealing previously undiscovered causal mechanisms

underlying sex differences that can be further interrogated.

2 | SEX AND GENDER DIFFERENCES IN
ADDICTION EPIDEMIOLOGY

There are many documented differences in drug use and addiction

between men and women. The Treatment Episode Data Set provided

by the Substance Abuse and Mental Health Services Administration

indicates sex differences in prevalence of substance use, the particular

substances involved, the age at which drug use is initiated and drug use

patterns.1 These differences are brought about by an interplay of bio-

logical traits, and social and environmental influences. Socioeconomic

status, life experiences and cultural factors including societal norms and

gender expectations shape drinking and drug use.2 According to the

2017 National Survey on Drug Use and Health, 53.6% of males and

45.7% of females 12 years or older use an illicit drug in their lifetime.3

Among US adults 18 years of age and older, 71.8% of males and 59.6%

of females consumed alcohol within a year.4 Although men still con-

sume more alcohol and illicit drugs than women, in the prevalence of

substance use has become more similar across men and women over

time. This has been attributed to societal factors including economic

development and modernization, alcohol culture and gender equality,

such that countries with greater equality show a narrowing of the gen-

der gap in prevalence of use5,6 and substance problem severity.7

3 | GENDER DIFFERENCES IN ADDICTION
TRAJECTORY

Males and females exhibit differences in the substances they use

and in patterns of drug use. For example, men are more likely to

smoke marijuana, while women are more likely to use alcohol and

prescription drugs, including benzodiazepines and sedatives.8-10

Women initiate drug use at lower doses than men,11,12 but their

drug use escalates more rapidly to addiction. Women report using

substances to relieve stress or negative emotions,13 and these neg-

ative emotions may be attributed to increased rates of sexual

abuse, trauma and other stressors that are related to the cultural

status of women.14 By contrast, men more frequently report peer

influence and reinforcing properties as reasons for drug use.15,16

Environmental risk factors contribute to addiction vulnerability differ-

ently in each sex. For instance, women who experience spousal

abuse often report being coerced to use drugs/alcohol17 and suffer

from increased risk of substance use problems.18,19 Maternal and

neonatal exposure to drugs, raise additional concerns for women

and their exposed offspring.20,21 Sexual minorities comprising the

LGBTQ individuals experience higher rates of SUDs.22,23 This is also

attributed to societal environmental issues, history of traumatic life

experience and other factors.24-26 The extent to which biological

factors play an intrinsic role in substance use in these populations

beyond the effects of chromosomal sex on environmental influences

is unknown.

Subjective effects of drugs in women are affected by the stage of

the menstrual cycle.27 Women have greater subjective responses to

cocaine in the follicular phase of the menstrual cycle28,29 when levels of

estrogen are rising and progesterone levels are low. During the luteal

phase, when progesterone levels are highest (estrogen levels are also ele-

vated at this time), women report a reduction in the positive subjective

effects of cocaine.28,29 The physiological and positive subjective effects

of cocaine are attenuated by exogenous progesterone in women, but not

men.30 Functional magnetic resonance imaging studies indicate changes

in the reward-related neural system across the menstrual cycle and

heightened reward responsivity shortly before ovulation.31,32 Such

changes in the functioning of reward-related circuits may underlie the

premenstrual increases in drug cravings.32 Taken together, these data

highlight the importance of sex hormones in the modulation of drug

effects in women.33

Treatment outcomes also differ between the genders. Men and

women face unique challenges in cessation of drug use. Women tend

to enter treatment sooner after becoming substance dependent34,35

and present with more co-occurring mood and anxiety disorders that

complicate treatment.36 Women are more susceptible to craving and

face a greater risk of relapse following abstinence.37-39

In summary, gender differences in human addiction are likely

the result of sex-specific biological mechanisms that interact

with sociocultural influences and life stressors that affect individ-

uals of different genders differently. The complex biopsycho-

social interactions underlying addiction make discovery of the

biological basis of sex differences in humans challenging, yet

identifying these biological mechanisms is critical for the devel-

opment of more precisely tailored preventative and therapeutic

interventions.40,41
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4 | HUMAN GENETIC STUDIES OF SEX
DIFFERENCES IN ADDICTION

4.1 | Twin and adoption studies

It has long been appreciated that a family history of SUD is one of the

strongest risk factors for the development of drug addiction.42 Herita-

bility estimates of SUDs obtained through family, adoption and twin

studies43-45 indicate a strong contribution of genetic factors in addiction.

In surveys of adult twins, heritability of addictive disorders has been esti-

mated in a range of 0.39 for hallucinogens to 0.72 for cocaine.46-48

A small number of these studies have assessed the heritability of

substance use by gender of the subjects49-52 and interactions of gen-

der and genetic factors were ignored because researchers typically

collapsed data across drug class and gender because of small sample

sizes. Heritability estimates for cocaine use disorder (CUD) have been

reported to be lower in women compared with men.52 However, no

mechanism has emerged to explain the heritability difference in CUD

for males and females.53 Recent meta analytic studies of alcohol use

disorder (AUD) indicate that gender differences are more likely attrib-

utable to social influences on alcohol exposure and use than sex-

specific genetic influences.54,55

Genome wide linkage studies, genome-wide association studies

(GWAS), whole genome sequencing and exome sequencing have

begun to identify specific genes and genetic variants that explain the

heritability of SUDs, although few such studies have reported gender

specific genetic effects (Table 1).

4.2 | Linkage studies

Early genome-wide linkage studies56,57 have reported chromosomal

locations harboring risk loci for cocaine,58 opioid,59,60 nicotine61,62

and alcohol dependence.63 As noted above, few of these historical

studies have analyzed the effect of sex on genetic linkage to sub-

stance dependence. One example is a study investigating the differen-

tial risk of opioid dependence in males and females,64 which identified

a significant sex-specific locus associated with opioid dependence and

several other suggestive loci. The positional information showed by

these legacy studies can now be combined with convergent data from

more recent genomic strategies to implicate genes that may play a

role in sex differences in substance dependence.

4.3 | Genome-wide association studies

For highly complex diseases like addiction that are influenced by vast

numbers of genetic variants, population-based genome-wide association

approaches are better suited to identify risk loci with relatively small

effects compared with family-based genetic studies,65,66 but the sample

size requirements are substantial. Early studies suffered from low genetic

marker density,67 but increased power and precision in subsequent stud-

ies has allowed identification of some causal genes.68,69 For example, the

nuclear transcription factor PKNOX2 has been identified as a sex-specific

candidate gene for composite substance dependence in women of

European origin.70 In the absence of heroic sample sizes, the power of

GWAS studies is typically insufficient to detect statistically significant

associations53 especially in the context of sex differences. The limitations

of small sample sizes have been overcome by combining GWAS data

from multiple studies to allow statistical meta-analyses.71,72 Significant

genome-wide findings have now emerged for alcohol for example,73 opi-

oids for example,74 cannabis for example75 and nicotine dependence for

example76 (Table 1).

A recent GWAS77 of alcohol consumption level and AUD using

the large multiancestry sample (N = 274 424) from the Million Veteran

Program78 reported 18 genome-wide significant loci. The sex-

stratified sampling methodology allowed detection of female-specific

signals despite the predominantly male sample, but power require-

ments precluded comparisons of Polygenic Risk Score by sex. In

another recent GWAS analysis, a sex-specific variant at ADGRV1 was

also identified with effects on opioid dependence risk in African

American males.79

5 | SEX DIFFERENCES AND GENETIC
MECHANISMS OF RISK FACTORS IN
ADDICTION AND RELAPSE

Some GWAS studies have incorporated the stress-related risk factors

that contribute to the development of drug addiction and in addiction

TABLE 1 Number of genome-wide significant (P ≤ 5 × 10-8) associations for various substance dependence categories including alcohol,
nicotine, opioids, cocaine, methamphetamine and cannabinoids, documented on GWAS catalog (https://www.ebi.ac.uk/gwas/) as of
May 12, 2019

Substance
dependence

No. of significant
associations

Range of effect
(OR: min-max)

Number
of studies

Studies with
sex-specific analyses

Studies that reported
sex-specific associations

Alcohol 46 0.104-19.54 15 3 2

Nicotine 6 0.032-0.1 5 1 0

Opioids 8 0.06-1.56 5 0 NA

Cocaine 1 Not reported 1 0 NA

Methamphetamine 3 0.104-0.348 1 0 NA

Cannabinoids 1 1.25 1 0 NA
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relapse susceptibility in GWAS. As noted above, the psychosocial and

cultural factors that influence addiction epidemiology are largely attrib-

utable to stress. Stress increases vulnerability to drug addiction,80,81

and this phenomenon differs between males and females.82 Females,

irrespective of their drug dependency status, report significantly higher

anxiety, stress and negative mood during distress37,83 and a greater

increase in drug craving as a function of stress37,84 relative to males.

Association of variants in several stress-related genes with heroin

and/or cocaine addiction have been identified in an African American

sample85 including variants in the FKBP5 gene which contribute to the

development of opiate addiction by modulating the stress response

through altered glucocorticoid sensitivity.86 Given the importance of

stress in the development and maintenance of addiction and the sub-

stantial evidence for sex differences in stress response, a thorough

understanding of the sex-specific genetic and molecular mechanisms of

stress responses is essential.

6 | SEX DIFFERENCES IN HUMAN
GENOMIC STUDIES OF ADDICTION

Genomic studies examine the abundance of all expressed genes under

various conditions in the postmortem human brain. The transition

from recreational substance use to addiction is accompanied by drug-

induced neuroadaptations brought about by long lasting expression

changes in neural genes.87 Gene expression profiles in individuals with

a history of chronic cocaine use compared with drug naive controls

have revealed a small number of genes with robust differential expres-

sion.88 Among the differentially expressed genes are those involved in

the regulation of transcription and chromatin structure in midbrain

dopaminergic neurons, highlighting the important role of epigenetic

factors in drug-induced changes in neurobiological mechanisms of

addiction. Similar genome-wide changes in midbrain gene expression

have also been observed in the postmortem brains of opioid users.88

Given that sex differences in gene expression and splicing patterns

are widespread in the adult human brain,89 studies of sex differences

in gene expression in drug-exposed brains could provide insight into

the mechanisms of addiction, but in humans, variability of drug expo-

sure history and the challenges inherent in postmortem brain limit the

utility of this approach.

Integrating genome-wide genetic findings with tissue-specific

gene expression genetics could reveal additional biological mecha-

nisms underlying substance dependence. Using this approach,

Huggett and Stallings have identified a SNP associated with cocaine

dependence and detected three genes (two loci) underlying this pre-

disposition that displayed robust enrichment in numerous brain

regions, including the hippocampus.90 Gene expression genetic ana-

lyses in the GTEx project show sex differences in genetic regulation

of gene expression in both reproductive and nonreproductive

tissues,91 providing an important means of evaluating the mechanisms

through which sex-specific genetic loci might act. This approach was

recently used to interpret the male-specific effects of an opioid

dependence-associated variant.79

7 | THE PROSPECTS FOR HUMAN GWAS
IN THE STUDY OF SEX DIFFERENCES IN
ADDICTION

In summary, human GWAS have been making inroads into the discov-

ery of genetic influences on addiction. However, identifying the

genetic components that influence sex-specific vulnerability to addic-

tion using GWAS has been particularly challenging because of the

high heterogeneity of the population in terms of the environmental

factors that influence addiction, from drug exposure and use trajecto-

ries to the involvement of interacting histories of stressful life events

and other confounding influences of social, economic and cultural fac-

tors. As a result of this heterogeneity, the common variants identified

for SUD in humans by GWAS have modest effect sizes. The sample

size requirements necessary to achieve adequate statistical power to

detect the numerous polygenic and small effect sizes associated with

complex and highly heterogeneous phenotypes92 presents prohibitive

costs and subject recruitment challenges. The sample size problem is

compounded in the genome-wide search for genetic variants associ-

ated with interacting effects of gender on addiction-related traits.93

Such studies require further increases in ascertained sample sizes that

can support the detection of the numerous small effects typical for

complex phenotypes and their interaction with biological sex, life

stress and drug exposure histories. Sample size alone cannot entirely

overcome this issue, in part because the strategies used to combine

studies to obtain high sample sizes often require simplification of the

phenotypic data used. For most subjects, thorough histories are

unavailable.

8 | MODELING ADDICTION-RELATED
BEHAVIOR USING LABORATORY ANIMALS

Despite the inherent challenges of modeling psychiatric disorders like

addiction in animals,94 research in model organisms present distinct

advantages. Model organisms can play a vital role in identifying sex-

specific mechanisms of addiction vulnerability, trajectory and recovery

through the efficient identification of pathological mechanisms, thera-

peutic target identification and drug development.95 A model is a sim-

plification of a complex system, that is, intentionally more amenable

to characterization and perturbation. Access to neurobiological inter-

mediate mechanisms and endophenotypes, control of drug exposure

history and manipulation of stress exposure provide a means of reduc-

ing noise and assessing the causal influence of environmental factors.

It is, of course, essential to understand how one's model departs from

the complex system that one intends to represent, and what steps

one must take to transfer information from a model to the complex

system. However, the benefits of efficiency, sample size, neurobiolog-

ical accessibility, control over drug exposure, life-time stress history

and other details of the experimental paradigm coupled to the exten-

sive biological, molecular and behavioral assays available in model

organisms render them an important tool in the search for biological

mechanisms of highly complex phenomena of addiction.
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Model organisms, particularly rodents, have many conserved neu-

robiological and physiological features of humans and display specific

facets of addiction-related behavior and neurobiological endo-

phenotypes. As such, they can be used to identify causal mechanisms

in brain-behavior relationships, including neurobiological and behav-

ioral consequences of chronic substance exposure.96 Animal research

can show specific neurobiological mechanisms (eg, molecular, cellular

or pharmacological) that mediate specific aspects of addiction. A dis-

tinct advantage of animal models is that the effects of an identified

mechanism can be directly tested through specific neural manipula-

tions on processes that mediate addictive behaviors.97 For investiga-

tions examining the role of environmental factors on addiction, animal

models offer the advantage of well-controlled, within-subject, longitu-

dinal studies with significantly reduced environmental variability. In

contrast, drug use in humans generally involves multiple drugs concur-

rently, which makes identifying the effects/interactions of specific

drugs difficult.

Animal studies allow greater choice over the population's extent

of genetic heterogeneity and each population has specific advan-

tages in noise reduction for detection of small effect alleles or a

broad survey of very high genetic heterogeneity with variation in

nearly every gene in the genome. Minor allele frequencies in even

the most complex mouse populations such as the Diversity Outbred

(DO) are theoretically 12.5%, providing greater power for detection

of variants that influence complex traits in substantially smaller sam-

ple sizes than required in human populations.98,99 With the excep-

tion of large-scale prospective studies including the Adolescent

Brain Cognitive Development and All-of-US, studies in humans are

generally limited to subjects who are already addicted, restricting the

ability to separate premorbid, drug-naïve traits from the effects of

ongoing drug use. Studies in genetic reference populations of model

organisms allow the assessment of multiple phases of the addiction

process in genetically identical individuals, including drug-naïve

traits, initiation, maintenance, drug withdrawal and relapse. Further-

more, it is possible to execute such studies in model organisms of

both sexes with identical genomes (eg, standard and recombinant

inbred populations), providing ample power to detect sex-specific

and sex by genotype interactions in mechanisms and characteristics

of addiction-related traits.

9 | INCLUSION OF BOTH SEXES IN
RODENT GENETIC STUDIES OF ADDICTION

Females have been systematically understudied in neuroscience and

biomedical research.82,100,101 Studying populations that include both

males and females ensures that the results may generalize to other

similarly diverse populations102 Although there is ample evidence of

sex differences in drug seeking and taking, the genetic mechanisms

that drive these differences remain understudied. In the Mouse

Phenome Database (MPD; https://phenome.jax.org) in 2017, 47.5%

of all behavioral measures are on males only, 5% on females only and

47.5% on both sexes. Strain by sex differences were observed in

42% of behavioral measures where males and females were

included. Of these behavioral measures annotated to the Vertebrate

Trait term “response to addictive substance trait,” 39% exhibited

strain by sex differences. As this number grows, and as genetic map-

ping studies in these populations are performed, discovery of mecha-

nisms of addiction-related sex differences will be increasingly

possible.

Reservations about including females have been based on the

assumption that female hormonal cycles introduce substantial “noise”

and complicate experimental studies relative to male-only studies,103

but increased variability in females is not consistently observed.102 In

a genetic analysis of hundreds of measures from widely used behav-

ioral assays in BXD recombinant inbred mice, within strain variability

is similar for males and females for most assays.104

In recent years, the number of studies that have included female

subjects has increased. However, studies that have explicitly investi-

gated sex differences82,105,106 remain limited in number and among

them, only a few have conducted a rigorous test of sex differences by

looking for significant interaction effects. Studying sex-specific effects

often requires large samples because interaction effects are often

small. Nonetheless, a “50/50” approach105,107,108 in which males and

females equally comprise each experimental group remains a prudent

decision. Although such designs may not support the detection of

small effect sizes, larger effects will be identified and the option of

pursuing sex differences in extensions of these designs remains

practical.

10 | SEX AS A MODULATOR OF GENETIC
EFFECTS UNDERLYING RODENT
ADDICTION-RELATED BEHAVIORS

There are several reviews addressing sex differences in SUD and

addiction.109-113 A multitude of rodent studies of addiction-related

phenomena have evaluated drug effects across different drug classes

including alcohol, opioids, psychostimulants like cocaine and amphet-

amines, nicotine and cannabinoids. Some aspects of sex differences

are likely to be shared across all drugs, whereas others will be specific

to particular substances. Addictive drugs comprise a chemically het-

erogeneous group with distinct molecular targets, and yet share cer-

tain characteristics. A key feature of all addictive drugs is their

capacity to increase mesocorticolimbic dopamine, an action believed

to be crucial for the emergence of compulsive addictive behavior114

albeit by different mechanisms. For example, cocaine is known to

increase the extracellular levels of dopamine by inhibiting the neuro-

nal reuptake process, whereas opioids exert their effects through acti-

vation of μ opioid receptor altering γ-Aminobutyric acid transmission

disinhibiting dopamine (DA) neurons in the ventral tegmental area

which increases DA release.115 Sex differences have been demon-

strated in drug responses across the various classes of drugs. The

nature of emerging sex differences are likely to be affected by multi-

ple factors including, the drug class, dose, developmental stage of the

animal, stages of the oestrous cycle, to name a few.
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Sex differences in behavioral effects of addictive drugs are widely

observed, but the extent and magnitude of these differences vary

across species, strains and even vendors (Table 2). For example,

female rodents exhibit heightened sensitivity to psychomotor stimu-

lant116-118 and reinforcing properties of cocaine.119-125 Various sex

differences are also observed for the other drug classes under multiple

behavioral paradigms.126-130

Although the magnitude and direction of the differences may vary

in different species and strains, this is a “feature,” not a “bug.” It is pre-

cisely this variation that we are harnessing in the use of genetic varia-

tion to discover the biological mechanisms of sex differences. The

genes and variants detected are likely to interact with stress, as

employed in the laboratory and as perceived by the subject. Stress

effects vary in their direction with variation in the magnitude of the

stressor. Therefore, stress-related genes may have similar roles across

species but the magnitude and direction of the effects may vary. Such

was the case observed in studies of melanocortin 1 variation in mice

and humans, originally detected in rodent genetic studies of stress-

induced analgesia.131

11 | SEX DIFFERENCES IN
TRANSCRIPTIONAL RESPONSE TO DRUGS

Gene expression analyses in reward-related regions over time follow-

ing drug exposure show mechanisms that underlie drug response,

drug-seeking and drug-taking.132,133 Differential gene expression

analysis in the mouse nucleus accumbens before and after prolonged

cocaine withdrawal have showed profound effects of sex and hor-

monal status in drug naïve states and fewer differentially expressed

genes unique to each sex, post-cocaine exposure.134 Sex-specific dif-

ferences in the brain tissue transcriptome in drug-naive vs postdrug

exposure states indicate genes that mediate sex differences in the ini-

tial response to cocaine administration and those involved in with-

drawal. RNA expression differences have also been demonstrated in

the NAc of adult male and female C57BL/6J mice following binge eth-

anol drinking sessions that was strongly influenced by sex.135,136

Parental germline cannabinoid exposures caused stronger alterations

in mRNA co-expression patterns for synaptic plasticity genes in the

dorsal striatum of female Long-Evans rats.137 Identifying the molecu-

lar changes brought about by drug exposure can help identify the neu-

robiological substrates that are impacted in both sexes and define

sex-specific risk factors.

12 | GENETIC EFFECTS CAN INFLUENCE
THE DETECTION OF SEX DIFFERENCES

Despite the general consensus that females are more sensitive to

many drug effects, some studies report either no difference138 or

decreased sensitivity compared with males.139,140 These disparate

outcomes are caused by methodological variability and differences

in age, species and strain of animals used (Table 2). MostT
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investigations of sex differences in addiction-related behaviors using

rodents have relied on a single strain, with results that do not gener-

alize across species or strains. The case in point is illustrated by a

study of thermal nociception and morphine anti-nociception that dis-

covered sex differences in some strains but not others.131 Similar

sex by genotype interactions are observed in locomotor stimulating

effects of cocaine between male and female mice from genetically

divergent strains141 and are likely to be important for other drug

classes as well.130,142 The influences of sex and genotype has also

been used to investigate other addiction-related traits. In a study

with DO mice that harbor heterogenous genetic backgrounds, a sex-

specific correlation of exploratory traits to drug-self administration

was observed.143 In a study with the inbred founder population of

DO mice, sign tracking, a trait characterized by the tendency to pur-

sue cues that predict the reward,144,145 was observed to be

influenced by both sex and strain of the mice, and across strains

males had a greater sign tracking range than females.143 Given the

influence of genetic background on sex differences in drug response,

it is possible to use genetic variation to identify the mechanisms of

these differences.

13 | GENETICS AND GENOMIC TOOLS
CAN SHOW THE NATURE OF SEX
DIFFERENCES IN ADDICTION-RELATED
BEHAVIOR

Rodent studies allow the evaluation of the nature of sex differences

and to what extent they are attributable to chromosomal or hor-

monal influences. Sex differences are influenced by multiple separa-

ble and/or interacting sex-biasing factors.146 Sex chromosome

complement, and associated dosing of X and Y chromosome genes,

is one such mechanism. These influences can be studied using the

four-core genotypes mouse model.147 In addition, gonadal pheno-

type and associated gonadal secretions, including sex steroids, can

elicit both organizational effects (ie, slowly emerging and long-lasting

effects of hormones that are initiated by, but not actively maintained

by, steroid levels) or activational effects (ie, steroid effects that are

induced and maintained by current hormone levels). It is possible to

tease these latter effects out experimentally using specialized para-

digms and approaches including measurements of steroid levels,

gonadectomy and hormone replacement strategies.148 Notably, all

these mechanisms combine and interact with one another to sustain

sex differences in phenotypes of interest, and once a sex difference

is detected, additional studies using hormonal or chromosomal stud-

ies can provide further insight into how the genetic influence is mod-

ified by sex.

Quantitative trait locus (QTL) mapping is one of the primary

genetic strategies used to show mechanisms underlying sex

differences. Modern behavioral QTL studies of sex-specific loci

are readily performed in recombinant inbred mouse strains

C57BL/6JxDBA/2J (BXD), experimental crosses of closely related

strains (C57BL/6J (B6) and C57L/J (C57)),149 collaborative cross

(CC) and DO mouse populations.104,150-153 Even though mice are

unable to recapitulate the entire psychobiological diagnostic con-

struct of addiction observed in humans, a set of alcohol and drug-

related phenotypes can be identified in mouse and humans to com-

pare QTL data between the species.154 Syntenic mapping of

these traits allows us to determine to what extent similar genes

influence a range of drug-related behaviors between the two spe-

cies. Identification of sex-specific loci is facilitated by the reduced

environmental and genetic variability in rodent genetic studies. For

example, syntenic sex-specific QTL have been discovered that reg-

ulate alcohol consumption155,156 and that mediate effects of opi-

oids157 using rodent models.

Minor allele frequencies are typically higher in mouse

populations than human populations, rendering possible the detec-

tion of small effect alleles. Selective breeding for behavioral pheno-

types that correlate with drug-seeking behaviors enriches and

genetically fixes risk alleles.158,159 In a study with high responder

and low responder rats selectively bred based on exploratory loco-

motion in a novel environment, seven genome-wide significant loci

accounted for approximately one-third of total variance and

two-thirds of genetic variance selected for this trait.160 Selective

breeding has been applied to the investigation of several addiction-

related traits114,161,162 that exhibit sex differences, including alco-

hol consumption161 and cocaine self-administration.162 Detection

of small effect alleles, coupled to precisely defined and controlled

phenotyping, allows the identification of previously unknown bio-

logical mechanisms of addiction.

Gene expression is also influenced by sex by genotype interac-

tions, and expression QTL that represent genomic loci responsible

for differential transcriptional regulation have been identified.

Through correlational analysis, we have been able to move beyond

sex-specific QTL and identify sex-specific gene expression net-

works.163 Such mechanisms of sex by genotype regulation of the

molecular phenotypic variation have been observed in mental

health issues in human164 and are expected to emerge in addiction

relevant regions of the brain.165 High-diversity mouse populations,

such as the CC and DO populations (for review,166) with known

and reproducible genetic variation provide a valuable platform for

studying the mechanisms that drive sex dimorphic addiction-related

traits.

14 | GENETIC ANALYSES OF SEX AS A
MODULATOR IN GENE BY ENVIRONMENT
INTERACTIONS

Model organisms allow the study of mechanisms of the interplay

among, environmental and genetic interactions that contribute to

sex differences in addiction vulnerabilities. Modulation of the inter-

actions among stress- and drug-related traits by sex has been inves-

tigated in rodents for alcohol use167 and other drugs.168-171

Sex-dependent outcomes of gestational (prenatal) stress augment

the rewarding and neurochemical-stimulating effects of the drug in
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rodents.172,173 A recent study has identified sex-specific QTL that

modulate responsiveness to cocaine following prenatal stress in off-

spring of BXD recombinant inbred mice.174 Both sex175,176 and

strain177,178 influence the response to stressors in the unpredictable

chronic mild stress paradigm, and many sex differences in mouse

behaviors are attributable to interactions with environmental vari-

ables.179,180 Therefore, genetic studies can show mechanisms of sex

differences in the stress response, and their role in addiction-related

behaviors.

15 | CONCLUSIONS

In conclusion, genetic variation in humans and model organisms can

be exploited in complementary ways to reveal the biological mecha-

nisms that underlie sex differences in addiction. The genetic influ-

ence of sex differences in addiction-related behavior can be

detected but not readily identified in human genetic studies because

of lack of statistical power at current sample sizes, and perhaps more

importantly, the tremendous variability in drug exposure, lifetime

history of stress and other environmental influences that contribute to

human heterogeneity. However, there is now ample evidence for the

existence of sex differences, and abundant evidence for genetic differ-

ences in stress-related effects, known to often mediate or modulate

sex differences in addiction-related behaviors. Rodents exhibit many

addiction-related behaviors and sex and strain x sex differences are

present in drug-related phenotypes and predisposing traits such as vul-

nerability to stress effects on these behaviors. Sophisticated genetic

mapping populations, neurobiological and molecular analysis tools are

more readily deployed in rodent populations and sex by genotype ana-

lyses are more adequately powered as a result of the higher minor allele

frequencies present in these populations. Therefore, the biological

mechanisms of sex differences in many different processes of addiction

are more readily discoverable using model organism genetics. The chal-

lenge remains in clearly establishing the meaning of the model—what

human traits, including endophenotypes, are conserved? What ele-

ments of the biological mechanisms are conserved and which are not?

Clearly, the precise genetic variants harbored by one human population

or another are not readily found in a rodent population, but many ele-

ments of the molecular pathways are. These serve as valuable pointers

to the mechanistic basis of sex differences in addiction and their impli-

cations for clinical applications in the prevention and treatment

of SUDs.
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