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ABSTRACT

Fluorescence lifetime imaging of the co-enzyme reduced nicotinamide adenine dinucleotide (NADH) offers a label-free approach for detect-
ing cellular metabolic perturbations. However, the relationships between variations in NADH lifetime and metabolic pathway changes are
complex, preventing robust interpretation of NADH lifetime data relative to metabolic phenotypes. Here, a three-dimensional convolutional
neural network (3D CNN) trained at the cell level with 3D NAD(P)H lifetime decay images (two spatial dimensions and one time dimension)
was developed to identify metabolic pathway usage by cancer cells. NADH fluorescence lifetime images of MCF7 breast cancer cells with
three isolated metabolic pathways, glycolysis, oxidative phosphorylation, and glutaminolysis were obtained by a multiphoton fluorescence
lifetime microscope and then segmented into individual cells as the input data for the classification models. The 3D CNN models achieved
over 90% accuracy in identifying cancer cells reliant on glycolysis, oxidative phosphorylation, or glutaminolysis. Furthermore, the model
trained with human breast cancer cell data successfully predicted the differences in metabolic phenotypes of macrophages from control and
POLG-mutated mice. These results suggest that the integration of autofluorescence lifetime imaging with 3D CNNs enables intracellular
spatial patterns of NADH intensity and temporal dynamics of the lifetime decay to discriminate multiple metabolic phenotypes.
Furthermore, the use of 3D CNNs to identify metabolic phenotypes from NADH fluorescence lifetime decay images eliminates the need for
time- and expertise-demanding exponential decay fitting procedures. In summary, metabolic-prediction CNNs will enable live-cell and
in vivo metabolic measurements with single-cell resolution, filling a current gap in metabolic measurement technologies.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0188476

I. INTRODUCTION

Cellular metabolism underlies cell function and behavior and,
thus, is integral to normal and disease pathologies. Cancer cells often
depend on glycolysis to produce energy even in the presence of oxygen,
a phenomenon referred to as the Warburg effect.1 Furthermore, the
glutaminolysis pathway can be enhanced in cancer cells to create bio-
synthetic precursors and compensate for reduced oxidative phosphor-
ylation (OXPHOS) when the electron transport chain is impaired.2

The dependence of cancer cells on specific metabolic pathways enables
cancer therapy by metabolism targeting drugs.3,4 Similarly, many
immune cell functions are dependent on specific metabolic pathways.
For example, pro-inflammatory macrophages are dependent on glycol-
ysis, while anti-inflammatory macrophages undergo a metabolic shift

toward oxidative phosphorylation.5 Additionally, T cells and B cells
also exhibit metabolic reprogramming to be more glycolytic in acti-
vated states.6,7 The metabolic dependences of immune cells suggest
that metabolism-modulation drugs may be effective strategies for
immune therapy.8,9 Therefore, studies of cellular metabolism and met-
abolic perturbation are important for advancing fundamental and
translational knowledge in many fields, including cancer biology,
immunology, and therapeutics.

Tissue heterogeneity and complex cellular environments necessi-
tate single-cell metabolic measurements.10–12 In particular, tumor cell
metabolic heterogeneity drives different clinical responses such as ther-
apy resistance and recurrence, hindering metabolic-based anti-cancer
treatment.13 However, live-cell measurements of metabolism with
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single-cell resolution are challenging. Currently, the widely used
Seahorse technology enables the detection of metabolic variations in
cell populations by measuring the oxygen consumption rate (OCR)
and the extracellular acidification rate (ECAR).14 Similarly, biochemi-
cal analyses of metabolic enzymes using Western Blot analysis, mRNA
analysis, and microplate reader absorption or fluorescence assays typi-
cally require cell dissolution or fixation and cannot resolve metabolic
information with single-cell resolution.15,16 Techniques to evaluate the
metabolism of a single cell include flow cytometry, single-cell RNA
sequencing, and immunofluorescence or immunohistochemistry
detection of metabolic enzymes, each of which requires the destruction
of cells.17 Therefore, noninvasive measurements of single-cell metabo-
lism in live samples are a desirable technique and potentially beneficial
for a wide range of scientific research and clinical applications.

Optical metabolic imaging provides a label-free modality to detect
metabolic activities at a cellular level. This technique captures the fluo-
rescence intensity and lifetime of autofluorescent metabolic co-
enzymes, including reduced nicotinamide adenine dinucleotide
(NADH). NADH is an electron acceptor in glycolysis and an electron
donor in oxidative phosphorylation.18 Additionally, NADþ is converted
to NADH through reduction in glutaminolysis.4,18 Furthermore,
NADH is used in fatty acid synthesis.18 NADH and its phosphate form,
NADPH, have the same fluorescent excitation and emission properties,
so NAD(P)H is used to represent the measured fluorescence signal of
both molecules.19 Fluorescence lifetime imaging measures the time a
fluorophore remains in the excited state before returning to the ground
state by emitting a photon.20 The fluorescence lifetime of NADH is sen-
sitive to the surrounding microenvironment and is altered due to con-
formational changes of NADH in free and enzyme-bound states. Free
NAD(P)H has a short lifetime around 300–500 ps, while protein-
bound NAD(P)H has a longer lifetime around 1.5–2ns.21 Thus, fluo-
rescence lifetime imaging (FLIM) can quantify changes in the free to
protein-bound ratios of metabolic enzymes, and NAD(P)H FLIM met-
rics are often altered with metabolic perturbations in cells and
tissues.18,22 Furthermore, fluorescence lifetime images can be seg-
mented into individual cells, allowing for metabolic measurements at a
cellular level.23,24

Fluorescence lifetime imaging in the time domain measures the
fluorescence intensity decay as a function of time following an excita-
tion pulse from a laser. A common FLIM technique uses time-
correlated single-photon counting (TCSPC), which repeatedly records
the arrival time of the emitted photons after excitation and sorts them
into a histogram.25,26 The raw fluorescence decay data represents a
temporal point spread function (TPSF) at each pixel. Traditional anal-
ysis of FLIM decay data requires deconvolution of the TPSF from a
measured instrument response function (IRF) and fitting the decay to
an exponential model. Due to the difference in lifetimes of free
and protein-bound NAD(P)H, the fluorescence lifetime decay of
NAD(P)H is often fit to a two-exponential decay model, and a mean
lifetime can be calculated by the weighted average lifetime of short and
long lifetimes. FLIM analysis is usually achieved using customized
code or software such as SPCImage (Becker & Hickl), FluoFit
(PicoQuant), FLIMfit, and FLIMJ.26–28 However, deconvolution and
exponential fitting analysis of the decay curve requires assumptions
about the data and measured signal, such as the number of lifetime
components and shift in instrument response function, that necessitate
domain expertise. Moreover, deconvolution and decay curve fitting are

time-consuming due to the iterative nature of deconvolution and max-
imum likelihood estimated exponential fitting. To overcome these lim-
itations of traditional FLIM analysis, convolutional neural networks
(CNN) have been developed to generate lifetime images from raw
TPSF images and intensity images at a fast speed.29–31

Once analyzed, the interpretation of NAD(P)H fluorescence life-
time data relative to metabolic phenotypes is difficult as a robust rela-
tionship between autofluorescence metrics and specific metabolic
pathways has yet to be established. Prior studies have used conven-
tional machine-learning algorithms to identify metabolic phenotypes
of T cells and stem cells from autofluorescence lifetime features of each
cell by averaging the pixel values across cellular regions.23,32 However,
this process removes intracellular spatial patterns, which contain meta-
bolic information since metabolic processes are distributed across
mitochondria networks and the cytosol.33 To retain spatial fluores-
cence patterns, image-based convolutional neural networks (CNN)
have been used to predict cell phenotypes from autofluorescence life-
time or intensity images extracted from traditional decay fitting of the
TPSF.34,35

Despite prior advances in using machine learning to aid the inter-
pretation of NAD(P)H fluorescence lifetime data, a 3-class prediction
of metabolism phenotypes remains unexplored. Furthermore, prior
models for phenotype identification use lifetime features or images
extracted from traditional decay fitting and thus lose subtle spatial and
temporal information that may facilitate phenotype identification.
Herein, we hypothesize that a 3D (two spatial dimensions and one
time dimension) CNN will identify three metabolic phenotypes of can-
cer cells, glycolysis, OXPHOS, and glutaminolysis. The 3D CNN will
retain spatial and temporal information to increase the specificity and
accuracy of metabolic pathway identification from NAD(P)H lifetime
decay data. A dataset of NAD(P)H fluorescence lifetime images of
MCF7 breast cancer cells with enhanced and inhibited glycolysis,
OXPHOS, and glutaminolysis pathways was used to train and test the
3D CNN models. The 3D CNN models trained with NAD(P)H TPSF
images discriminated three different metabolic pathways at the cellular
level with more than 90% accuracy. Moreover, the 3D CNN models
trained on the cancer cells were tested to predict the metabolic pheno-
types of two cell lines of control and mitochondria-deficient macro-
phages. To our knowledge, this is the first study to successfully
differentiate three major metabolic pathways, glycolysis, OXPHOS,
and glutaminolysis at a cellular level using NAD(P)H autofluorescence
decay data. This novel approach of NADH FLIM combined with 3D
CNNs for metabolic pathway identification will enable live-cell and
in vivo studies of metabolic heterogeneity in cancer and immunology,
metabolism-targeted therapies, and genetic mitochondrial diseases.

II. RESULTS
A. Temporal characteristics of NAD(P)H fluorescence
of cells with fixed metabolic phenotypes

The differences in the TPSF data across the metabolic groups can
be visualized and potentially detected by machine learning models for
metabolism differentiation. Representative intensity-scaled, mean fluo-
rescence lifetime images allow visualization of different NAD(P)H
fluorescence lifetimes due to metabolic perturbations at the image level
[Fig. 1(a)]. The processed TPSF image size for each cell was 21 � 21
� 256 pixels (X � Y � T), and the cytoplasm contains more NAD(P)
H molecules compared to the nucleus, resulting in brighter NAD(P)H
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intensity [Figs. 1(a) and 1(b)]. Down-sampling of the TPSF
images resulted in a reduction of the NAD(P)H decay curve’s
length and shifted the peak position, originally mostly at the 64th or
65th (3.17 ns) [Fig. S2(b)] to the 30th or 31st time frame [Fig. S2(c)
and S2(d)].

Averaged TPSF and data-dimension reduction techniques were
used to visualize differences in NAD(P)H TPSF of MCF7 cells depen-
dent on glycolytic, OXPHOS, and glutaminolysis metabolism. The
average decay curves of MCF7 cells dependent on specific metabolic
pathways show that the cells using glycolysis have an increased fraction
of NAD(P)H with a shorter lifetime, 0.79 for glycolysis vs 0.68 for
OXPHOS and glutaminolysis [Fig. 1(c)]. Furthermore, the down-

sampling procedure maintained the differences in the decay curves
between different metabolic groups [Figs. S2(e) and S2(f)]. To visualize
the importance of the temporal information in discriminating meta-
bolic phenotypes, the average NAD(P)H intensity within each cell at
each time point was calculated resulting in 256 temporal features for
each cancer cell. The t-distributed stochastic neighbor embedding
(t-SNE) algorithm was applied to project these high-dimensional (256)
temporal features of each cell into a 2-dimensional (2D) space to visu-
alize the time dimension variance across the metabolic phenotypes.
The t-SNE map visualizes overlap among cells using OXPHOS and
glutaminolysis, and slight separation of cells using glycolysis
[Fig. 1(d)].

FIG. 1. Characteristics of NAD(P)H fluorescence lifetime decays of MCF7 cells dependent on OXPHOS, glycolysis, and glutaminolysis. (a) Representative NAD(P)H sm images
of cancer cells dependent on OXPHOS, glycolysis, and glutaminolysis, scale bar¼ 50 lm. (b) Representative fluorescent images of an MCF7 cell montaged across time. The
upper left frame corresponds to t¼ 0 ps, and the bottom right frame corresponds to t¼ 12.5 ns, with 48.8 ps time resolution of each frame. The representative cell is from the
glycolysis group, and the image size is 21 � 21 spatial pixels (�22� 22 lm2) � 256 frames across time. (c) Average NAD(P)H decay curves (TPSF) of cells dependent on
glycolysis, OXPHOS, and gluataminolysis. (The curve was obtained by averaging the decays normalized to the decay peak maximum of all pixels within a cell and then aver-
aged across all cells within each metabolic group.) (d) t-SNE projection with the NAD(P)H intensity decay as input features of MCF7 cells dependent on glycolysis (green),
OXPHOS (red), and glutaminolysis (blue).
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B. 3D CNN classifies cells using glycolysis or OXPHOS

A 3D fluorescence lifetime imaging LeNet (FLI-LeNet) model
was created to predict cancer cells as either glycolytic or oxidative
[Fig. 2(a)]. The structure of the 3D FLI-LeNet model was derived
from the traditional 2D LeNet model and consisted of two convolu-
tional layers and two feature mapping layers,36 and the extracted fea-
ture maps allow visualization of the features used for classification.
The feature map for a representative cell from the 3D FLI-LeNet model
shows that both time-domain features [Figs. S3(a) and S3(b)] and
morphological features including the cell edges and cytoplasm [Fig. S3
(c)] provide information from the NAD(P)H TPSF images to discrimi-
nate glycolytic from OXPHOS-dependent MCF7 cells.

The 3D FLI-LeNet model was trained to differentiate glyco-
lytic cancer cells from oxidative cancer cells using the NAD(P)H
TPSF images (21 � 21 � 256) with a 0.001 learning rate. After
approximately 30 epochs, the model attained a validation loss
below 0.1 [Fig. 2(b)] and a validation accuracy of around 90%
[Fig. 2(c)]. Moreover, the models trained with MD and MEDD
showed a similar training process [Figs. 2(b) and 2(c)]. To further
visualize the training performance, 64 learned features extracted

from the FLI-LeNet model were projected onto a 2D space using
t-SNE. The FLI-LeNet identified features that separated the cells
using glycolysis from those using OXPHOS, as evidenced by their
well-separated clusters in the t-SNE plot [Fig. 2(d) and Figs. S4(b)
and S4(c)]. As a result, the FLI-LeNet model trained with the origi-
nal TPSF images achieved an average AUC ROC of 0.978, an aver-
age accuracy of 92.0%, an average recall of 88.3%, and an average
precision value of 97.4% for the fivefold test datasets in classifying
MCF7 cells using glycolysis vs those using OXPHOS [Fig. 2(e),
Table I, Table S3].

The FLI-LeNet model trained with the temporal down-sampled
TPSF images maintained the ability to distinguish metabolic status
with comparable prediction performances and a training speed that is
twice as fast as the FLI-LeNet model trained with the original TPSF
images. The FLI-LeNet model trained with MEDD attained an AUC
value of 0.978, an accuracy of 92.7%, a recall of 85.7%, and a precision
of 97.8% in predicting glycolytic and oxidative MCF7 cells [Fig. 2(e),
Table I, Table S4]. Similarly, the FLI-LeNet model trained with MD
achieved an accuracy of 91.8%, an AUC of 0.980, a precision of 97.6%,
and a recall of 83.0% [Fig. 2(e), Table I, Table S5].

FIG. 2. A 3D FLI-LeNet CNN model for classifying glycolytic from oxidative MCF7 cells from NAD(P)H TPSF images. (a) The structure of the FLI-LeNet CNN model for predict-
ing cancer cells using glycolysis and cancer cells using OXPHOS based on the NAD(P)H TPSF images. (b) Validation loss and training loss by epoch for FLI-LeNet models
trained with different datasets (Org: original TPSF images, MD: down-sampled TPSF images with the mean filter, MEDD: down-sampled TPSF images with the median filter).
Solid lines represent validation loss, and dashed lines represent training loss. (c) Validation accuracy and training accuracy by epoch for FLI-LeNet models trained with different
datasets. Solid lines represent validation accuracy, and dashed lines represent training accuracy. (d) t-SNE visualization obtained from the last activation map of the FLI-LeNet
model of the test data of the model trained with the original NAD(P)H TPSF images. Each dot corresponds to one cell based on its representation in the last activation layer of
the pre-trained FLI-LeNet after fine-tuning. Red data points represent cells using OXPHOS, and green data points represent the cells using glycolysis. (e) Representative ROC
curves of FLI-LeNet models trained with original NAD(P)H TPSF data (Org) and down-sampled data (MD, MEDD) for predicting glycolysis or OXPHOS of MCF7 cells within
the test datasets.
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C. 3D CNNmodels allow differentiation of glycolysis,
OXPHOS, and glutaminolysis metabolic pathways
in cancer cells with NAD(P)H TPSF images

To further explore the ability of 3D CNN models to detect
metabolic activities in cells from NAD(P)H fluorescence lifetime
images, we expanded our dataset to include three groups of MCF7
cells, each dependent on a single metabolic pathway: glycolysis,
OXPHOS, or glutaminolysis. A new 3D CNN model called FLI-
ResNet was developed for the prediction of glycolysis, OXPHOS,
and glutaminolysis from NAD(P)H TPSF images and compared
with three-group prediction performance of FLI-LeNet models
[Fig. 3(a)]. The feature map of a representative cell showed that the
FLI-ResNet model extracts both temporal and spatial patterns in
the TPSF images (Fig. S5).

Both the FLI-LeNet and FLI-ResNet models were trained on the
original TPSF images of cells using a learning rate of 0.001. After
approximately 30 epochs, the FLI-ResNet models achieved a validation
loss below 0.1, with a validation accuracy exceeding 85% [Figs. 3(b)
and 3(c)]. In comparison, the FLI-LeNet models attained a validation
loss below 0.1 and a validation accuracy above 80% after 30 epochs
[Figs. S6(c) and S6(d)]. It was observed that the FLI-ResNet exhibited
a stable performance with fewer fluctuations in validation accuracy
and loss during the training progress when trained with the original
TPSF images than when trained with MD and MEDD [Figs. 3(b) and
3(c)]. To further assess the ability of the models to identify cell depen-
dencies on glycolysis, OXPHOS, and glutaminolysis, t-SNE dimen-
sionality reduction algorithms were applied to the last activation layer,
enabling the visualization of cell clustering in a 2D space based on the
extracted features of the models. The t-SNE maps of the last activation
layer of the FLI-ResNet and FLI-LeNet models show the separation of
MCF7 cancer cells dependent on glycolysis, OXPHOS, and glutami-
nolysis and subgroups of cells within the glycolysis and OXPHOS
dependent populations [Fig. 3(d), Figs. S6(e) and S7].

Both the FLI-ResNet and FLI-LeNet models discriminate MCF7
cells with differing metabolic activities with an accuracy above 85%.
The FLI-ResNet model trained on the original TPSF images showed
the best performance in differentiating MCF7 cells using glycolysis,
OXPHOS, or glutaminolysis, with an average accuracy of 92.6%, preci-
sion of 92.6%, recall of 93.1%, and an F1-score of 92.7% for the fivefold
cross-validation (Table II, Table S6). In contrast, the FLI-LeNet model
trained on the original TPSF images achieved an average accuracy, pre-
cision, recall, and F1-score of 85.0%, 86.7%, 85.4%, and 85.3%, respec-
tively (Table II, Table S9). When trained on down-sampled datasets,
the FLI-ResNet model achieved recall, precision, and F1-scores of

87%–89% for distinguishing metabolic activities of MCF7 cells from
NAD(P)H TPSF images (Table II, Tables S7 and S8). The FLI-LeNet
models trained on the MD and MEDD down-sampled datasets
maintained similar performance, achieving accuracy rates of �88%
and precision, recall, and F1-scores of 88%–89% (Table II, Tables S10
and S11).

D. The metabolic-prediction models transfer to a FLIM
dataset of murine macrophages with genetically mod-
ulated mitochondria function

The applicability of the 3D CNN models was evaluated using
wild-type (WT) and POLG-mutated murine BMDMs, which have
mitochondrial DNA mutations that result in mitochondria and
OXPHOS dysfunction.37 The sequential addition of glucose followed
by the electron transport chain inhibitor oligomycin stimulated the
maximal glycolytic rate resulted in an increase in ECAR in both WT
and POLG BMDMs [Fig. 4(a)]. The addition of 2-DG to inhibit glycol-
ysis decreased ECAR of both WT and POLG BMDMs [Fig. 4(a)]. In
subsequent experiments of measuring OCR, the successive addition of
FCCP plus pyruvate and rotenone plus antimycin to stimulate and
inhibit OXPHOS resulted in an increase and decrease, respectively, of
the OCR of WT BMDMs [Fig. 4(b)]. However, the changes in OCR of
POLG BMDMs exposed to FCCP plus pyruvate and rotenone plus
antimycin were not as great in magnitude as compared with the WT
BMDMs, indicating impairments in OXPHOS capacity of POLG
BMDMs [Fig. 4(b)]. In the presence of glucose, oligomycin caused a
decrease in OCR in WT BMDM [Fig. 4(b)]. However, this decline was
less pronounced in POLG BMDMs. Moreover, the POLG BMDMs
exhibited elevated basal levels of ECAR and reduced levels of OCR
compared to the WT BMDMs, suggesting that the POLG BMDMs are
more glycolytic than the WT BMDMs as we previously reported [Figs.
4(a) and 4(b)].38

NAD(P)H fluorescence lifetime imaging revealed different NAD
(P)H lifetime characteristics of the WT and POLG BMDM [Fig. 4(c)].
WT BMDMs exhibited a longer NAD(P)H lifetime compared to the
POLG-mutated macrophages [Fig. 4(c), Fig. S8]. Treatment with cya-
nide decreased the mean NAD(P)H lifetime of both WT and POLG
BMDMs [Fig. 4(c), Fig. S8].

NAD(P)H FLIM images of control and cyanide-treated WT and
POLG BMDMs were input into the glycolysis vs OXPHOS FLI-LeNet
models previously trained with MCF7 cancer cell images. For the con-
trol WT BMDMs, the FLI-LeNet model (original data, 256 images in
the time dimension) predicted 56% as oxidative and 44% as glycolytic
[Fig. 4(d)]. After treatment with cyanide to inhibit OXPHOS and

TABLE I. Performance of FLI-LeNet CNN model on prediction of glycolytic and oxidative cells trained with different datasets. Values are mean þ/� standard deviation for the
test datasets of the fivefold cross-validation replication.

Data type AUC Accuracy Precision Recall

Orga 0.978 (60.003) 92.0% (62.2%) 97.4% (60.5%) 88.3% (69.2%)
MEDDb 0.978 (60.006) 92.7% (61.6%) 97.8% (60.3%) 85.7% (64.6%)
MDc 0.980 (60.004) 91.8% (61.2%) 97.6% (60.5%) 83.0% (62.9%)

aOrg: original TPSF dataset (21 � 21 � 256).
bMEDD: down-sampled TPSF dataset (21 � 21 � 128) with median filter.
cMD: down-sampled TPSF dataset (21 � 21 � 128) with mean filter.
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stimulate glycolysis, 82% of the WT macrophages were predicted to be
glycolytic, and 18% were oxidative [Fig. 4(d)]. In contrast, 79% of con-
trol POLG BMDMs were predicted to be glycolytic and 21% oxidative
[Fig. 4(d)] at rest. After treatment with cyanide, 95% of the POLG
macrophages were identified as glycolytic [Fig. 4(d)] and 5% as oxida-
tive. The FLI-LeNet models generated from MEDD and MD data
resulted in similar predictions of the WT macrophages, with an

increase in the glycolytic portion observed with cyanide treatment
(Fig. S9). The MD FLI-LeNet model identified that most POLG
BMDMs were glycolytic, and cyanide treatment of POLG BMDMs
resulted in a smaller proportion of glycolytic macrophages (Fig. S9).
However, the FLI-LeNet model trained with MEDD data predicted a
majority of POLG BMDMs to be oxidative for both the control and
cyanide-treated groups (Fig. S9).

FIG. 3. 3D FLI-ResNet CNN model for classifying MCF7 cells as dependent on glycolysis, OXPHOS, and glutaminolysis. (a) Illustration of the structure of the FLI-ResNet CNN
model for predicting cancer cells using glycolysis, OXPHOS, and glutaminolysis from the original NAD(P)H TPSF images. (b) Validation and training loss by epochs for the FLI-
ResNet models trained with a 0.001 learning rate for predicting metabolic activity in different datasets (Org: original TPSF images, MD: down-sampled TPSF images with the
mean filter, and MEDD: down-sampled TPSF images with the median filter); solid lines represent validation loss, and dashed lines represent training loss. (c) Validation accu-
racy and training accuracy over epochs for FLI-ResNet trained with a 0.001 learning rate for predicting metabolic activity in different datasets; solid lines represent validation
accuracy, and dashed lines represent training accuracy. (d) 2D t-SNE visualization of the test data of the last activation map of the FLI-ResNet model created with the original
NAD(P)H TPSF images. Red data points represent MCF7 cancer cells dependent on OXPHOS, green data points represent MCF7 cancer cells dependent on glycolysis, and
blue data points represent MCF7 cancer cells dependent on glutaminolysis.
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III. DISCUSSION

Optical imaging of the fluorescent co-enzyme NAD(P)H is a
functional, label-free technique to assess metabolic perturba-
tions.20,21,24,39–44 However, the interpretation of variations in the auto-
fluorescence lifetime metrics is challenging and requires domain

expertise since NAD(P)H lifetime measurements are multivariant, and
many distinct metabolic pathways contribute to NAD(P)H signals.
Recent studies have employed machine-learning algorithms to identify
cellular phenotypes from autofluorescence intensity and lifetime
features;23,32,33,45 however, the separation of three metabolic states,

FIG. 4. Prediction of metabolic activity in WT and POLG-mutated murine macrophages using 3D FLI-LeNet CNN models. (a) Extracellular acidification rate (ECAR) of WT
BMDMs and POLG-mutated BMDMs was measured under basal conditions and with the sequential addition of glucose, oligomycin, and 2-DG. (b) Oxygen consumption rate
(OCR) of WT BMDM and POLG-mutated BMDMs was under basal conditions and with the sequential addition of glucose, oligomycin, FCCP & pyruvate, and rotenone & anti-
mycin. (c) Representative NAD(P)H sm images of control and cyanide-treated WT and POLG macrophages show alterations in mean fluorescence lifetimes due to POLG muta-
tion and cyanide treatment, scale bar¼ 50 lm. (d) Prediction of the metabolism of WT and POLG BMDMs as glycolysis or OXPHOS by the FLI-LeNet models trained with
MCF7 cancer cells using the original TPSF images. Data are the number of cells and corresponding percentage.

TABLE II. Performance of FLI-ResNet and FLI-LeNet CNN models on prediction of cells using glycolysis, OXPHOS, and glutaminolysis trained with different datasets. Values
are mean þ/� standard deviation for the test datasets of the fivefold cross-validation replication.

Data type Model Accuracy Precision Recall F1-score

Orga FLI-ResNet 92.6% (62.1%) 92.6% (62.2%) 93.1% (61.8%) 92.7% (62.1%)
MEDDb FLI-ResNet 87.0% (64.9%) 89.4% (64.1%) 87.5% (64.0%) 87.4% (64.7%)
MDc FLI-ResNet 88.0% (65.0%) 89.1% (63.6%) 89.5% (64.1%) 88.0% (65.1%)
Orga FLI-LeNet 85.0% (63.6%) 86.7% (62.1%) 85.4% (64.2%) 85.3% (63.6%)

MEDDb FLI-LeNet 88.1% (61.8%) 89.0% (61.3%) 88.7% (61.9%) 88.4% (61.7%)
MDc FLI-LeNet 88.6% (61.2%) 89.3% (61.6%) 88.8% (60.7%) 88.9% (61.2%)

aOrg: original TPSF dataset (21 � 21 � 256).
bMEDD: down-sampled TPSF dataset (21 � 21 � 128) with median filter.
cMD: down-sampled TPSF dataset (21 � 21 � 128) with mean filter.
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glycolysis, OXPHOS, and glutaminolysis, from autofluorescence life-
time data is difficult due to the intricate interconnections of metabolic
pathways, and the limited information contained within lifetime fea-
tures extracted by exponential fitting. This study explores deep learn-
ing models for a three-way prediction of cancer cell metabolism as
dependent on glycolysis, OXPHOS, or glutaminolysis from NAD(P)H
fluorescence lifetime decay data.

The novel 3D models presented here, FLI-LeNet and FLI-ResNet,
simplify fluorescence lifetime image analysis and have the potential to
be used for metabolic profiling of live cells from NAD(P)H FLIM
images. Previously, pre-trained CNN models have been used to gener-
ate lifetime component images directly from the lifetime data without
deconvolution and fitting; however, these models may be limited to
the lifetime values and characteristics of the training dataset and report
that lifetime values are not metabolic functions of cells.29,30 Herein, the
3D FLI-LeNet and FLI-ResNet CNNmodels directly output metabolic
activities of cells using the raw TPSF data and bypassing traditional
FLIM analysis techniques. Compared to 2D CNNs, 3D CNNs allow an
additional dimension of input data, allowing the models to capture
both temporal and spatial dynamics within the X-Y-T NAD(P)H
TPSF images. The t-SNE visualization of the temporal features of cells
showed a slight separation of glycolytic cells from cells using OXPHOS
and glutaminolysis, implicating that temporal patterns within the fluo-
rescence decay can effectively discriminate different metabolic activi-
ties [Figs. 1(c) and 1(d)]. Furthermore, spatial signals within NAD(P)
H lifetime images encode metabolic information, and previous analysis
of mitochondria structure in NAD(P)H images revealed different clus-
ter patterns in glycolytic and oxidative cells.33,46,47 The FLI-LeNet
enabled the classification of the glycolytic and oxidative phenotypes of
cancer cells with over 90% accuracy, which was comparable to 2D
CNN models that use five NAD(P)H lifetime component images (s1,
s2, a1, sm, intensity).

35 The recall of the FLI-LeNet was lower than the
precision and accuracy values for predicting glycolysis and OXPHOS
utilization by breast cancer cells, possibly indicating heterogeneity in
the response of MCF7 cancer cells to glycolysis inhibition by 2-DG.48

The best-performing model was the FLI-ResNet trained with the origi-
nal NAD(P)H TPSF images, achieving 94% accuracy in differentiating
cells using glycolysis, OXPHOS, and glutaminolysis (Table II).

Although more powerful than 2D CNN models, 3D CNNs are
computationally more expensive, resulting in longer training and infer-
ence times. Herein, the 3D TPSF NAD(P)H images are composed of
256 2D intensity images representative of different time points,
demanding 30 times the storage memory (�400 MB vs 12.7 MB) and
1.2 times the computational cost (144690 vs 119466 parameters) for
around 5000 images, as compared to the previous 2-D CNN model
trained with NAD(P)H lifetime images. To overcome this challenge,
protocols were developed to down-sample the TPSF images in the
time dimension by applying mean and median filters with a window
of 3 to halve the original dataset (Fig. S2). The FLI-LeNet models
trained with the down-sampled datasets performed similarly to models
trained on the original TPSF images but trained three times faster.
However, the FLI-LeNet model trained with MEDD did not perform
well when applied to the macrophage datasets, suggesting the quality
of training data is sensitive to median down-sampling (Fig. S9). The
differences in MD and MEDD FLI-LeNet performance (Fig. S9) may
be attributed to differences in variable effects of mean vs median

averaging on the noise within the lifetime decay curves. The FLI-
ResNet trained with original TPSF images exhibited a better perfor-
mance compared to models trained with MD and MEDD. The FLI-
ResNet model, with its deeper network and residual connections, may
capture more intricate and abstract features than the FLI-LeNet model
when sufficient training resources are available49 and, thus, be more
sensitive to information lost with down-sampling.

To ensure the versatility of the metabolism-prediction models
beyondMCF7 cells and broaden their applicability to various cell types
and studies, we applied the FLI-LeNet model to NAD(P)H FLIM data
of murine macrophages with and without the POLG mutation. The
polymerase gamma (POLG) is the enzyme responsible for replicating
and maintaining mitochondrial DNA (mtDNA) within the mitochon-
dria.37 Mutations in the POLG gene are associated with a range of dis-
orders characterized by mtDNA instability, leading to reduced fidelity
and efficiency of mtDNA replication.50,51 These mutations result in
mitochondrial dysfunction, which affects cellular metabolism.
Therefore, WT and POLG BMDMs provide a model with known met-
abolic phenotypes to assess the efficacy of the 3D CNN models. The
pre-trained FLI-LeNet correctly predicted a higher fraction of POLG
BMDMs as glycolytic than the WT macrophages [Fig. 4(d), Fig. S9,
Org and MD models], a finding that is consistent with ECAR and
OCR data of the differences in the basal metabolic states of WT and
POLG BMDMs [Figs. 4(a) and 4(b), Org and MD models].
Additionally, the FLI-LeNet identified an increased fraction of glyco-
lytic WT BMDMs with cyanide treatment, consistent with the
expected metabolic shift due to OXPHOS inhibition [Fig. 4(d), Fig. S9,
Org and MD models]. Even though an elevated fraction of glycolytic
phenotypes in POLG BMDMs upon cyanide treatment was also pre-
dicted by FLI-LeNet [Fig. 4(d), Fig. S9, Org and MD models], this
increase is less compared to the WT BMDMs [Fig. 4(d), Fig. S9, Org
and MD models]. This observation indicates that the effectiveness of
cyanide in compromising OXPHOS in macrophages with POLG
mutation is reduced when compared toWTmacrophages.

The applicability of FLI-LeNet models to NAD(P)H fluorescence
lifetime images of BMDMs suggests that the features identified by the
models trained with cancer cells are preserved across datasets of differ-
ent species and different metabolic perturbations. The model is pri-
marily influenced by the temporal patterns in NAD(P)H fluorescence
lifetime images, and the similarity in morphological characteristics,
such as cell size and intensity difference between the cytoplasm and
nucleus [Figs. 1(a) and 4(c)], among BMDMs and MCF7 cells likely
also facilitates the application of cancer cell-trained FLI-LeNet CNN
models to macrophages. The accurate results of the FLI-LeNet model
on the BMDMs indicate the successful transferability of the FLI-LeNet
model developed with data of MCF7 cells with glycolysis and
OXPHOS inhibitor treatment and glucose, and pyruvate substrate
exposure to genetic modulation-induced metabolic data.

In this study, the lifetime decay matrix was obtained using time-
correlated single-photon counting (TCSPC) with a time resolution of
12.5 ns and 256 time frames. The lifetime decay matrix can also be
measured using time-gated imaging or pulse sampling with fewer time
frames.52 It is possible that a 3D CNN trained with different formats of
decay data can effectively distinguish metabolic phenotypes of cells, as
the down-sampled NAD(P)H TPSF images yielded similar perfor-
mance for identifying metabolic pathways (Figs. 2 and 3). Although
the ResNet 3D CNN achieved high accuracy in separating MCF7 cells
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dependent on glycolysis, OXPHOS, and glutaminolysis, metabolic
pathways are not mutually exclusive. Significant crosstalk and overlap
between different metabolic pathways can exist within a cell. In this
study, the training datasets contained cells with carefully controlled
metabolic activities altered by nutrients within the media and inhibi-
tion of pathways by chemicals. The NAD(P)H TPSF images likely con-
tain features that could be informative on the heterogeneity of
metabolic pathway use by cells, and CNNs have the potential to handle
more challenging tasks, such as mapping the percentage of energy sup-
plied by different metabolic pathways. However, the advancement of
CNN models for this application to separate contributions of meta-
bolic activities within individual cells is primarily hindered by the lim-
ited availability of ground truth single-cell data. Obtaining high-quality
and comprehensive datasets that accurately represent various meta-
bolic conditions at the cellular level would greatly facilitate the further
development and refinement of CNNmodels for metabolism analysis.

The classification of cellular metabolic activities from NAD(P)H
fluorescence decay image using 3D CNNs may be useful for diverse
applications that require non-contact, live-cell detection of metabolic
states at the cellular level. The models presented here were developed
and validated using in vitro cancer cell experiments, with cellular
metabolism manipulated chemically. Although the models demon-
strated accurate transfer to NAD(P)H FLIM images of macrophages
with genetic metabolic perturbations, there are likely limitations of the
models for application to more complex samples such as tissues
imaged ex vivo or in vivo. For clinical cancer applications, the tumor
environment is complex, including cancer cells with heterogeneous
metabolic activities and drug responses and additional cell populations
such as immune cells, fibroblasts, and endothelial cells. While the
models described herein may lack direct applicability to images of such
clinical tissues, the models could be retrained using representative
in vivo and ex vivo tissue data. As the number of prediction outcomes
increases to encompass additional cell types and metabolic states, the
volume of data required for training also increases. To overcome the
challenges of obtaining sufficient in vivo and ex vivo FLIM data, train-
ing datasets could include simulated FLIM images where lifetime
parameters, cell and nucleus size, morphology, and intercellular and
intracellular heterogeneity are selected to mimic experimental data.53

Future studies may expand the applicability of FLIM prediction mod-
els by training with various biological samples to create an ensemble of
models specific to the characteristics of each FLIM dataset.

IV. CONCLUSION

In this paper, the predominance of three major metabolic
pathways, glycolysis, oxidative phosphorylation, and glutaminoly-
sis, in MCF7 cancer cells was predicted from NAD(P)H TPSF
images using 3D CNN models. The FLIM-based CNN models
effectively utilize both temporal and spatial information within the
NAD(P)H TPSF data, achieving accuracy rates exceeding 90%.
Notably, the CNN models trained with human cancer cells were
successfully transferred to murine macrophages. In conclusion, the
combination of autofluorescence lifetime imaging of NAD(P)H
and 3D CNN models offers a label-free modality for identifying
and characterizing metabolic activities in live cells that can be pro-
moted across different metabolic perturbations and various cellular
contexts for broad applications.

V. METHODS
A. NAD(P)H fluorescence lifetime dataset of cancer
cells

The NAD(P)H fluorescence lifetime images of MCF7 cancer cells
with different metabolic activities were provided by Hu and Walsh.
The methods summarized here are covered in full detail in Hu et al.35

MCF7 breast cancer cells were cultured in the Dulbecco’s Modified
Eagle’s Medium (DMEM) with glucose (50mM), pyruvate (2mM),
1% antibiotic-antimycotic, and 10% fetal bovine serum (FBS). The cells
were seeded at a density of 2 � 105 cells in 2ml of the culture media
per 35mm glass-bottom imaging dish 48h before imaging. Three met-
abolic groups were created to target glycolysis, oxidative phosphoryla-
tion (OXPHOS), and glutaminolysis. To enhance glycolysis, the cells
were treated with NaCN (4mM) to inhibit OXPHOS 5min before
imaging. To enhance OXPHOS, 2-Dexoy-D-glucose (2-DG, 50mM)
was added to the cells 1 h before imaging to inhibit glycolysis.
Additionally, a second group of OXPHOS enhanced cells was created
by providing glucose-starved cells with glucose-free DMEM supple-
mented with pyruvate (50mM), 1 h prior to imaging. To enhance glu-
taminolysis, cells were plated in DMEM with glutamine (2mM) as the
only nutrient and imaged at 1, 2, and 3 h. NAD(P)H fluorescence life-
time images were captured on a multiphoton fluorescence lifetime
microscope (Marianas, 3i) using 750 nm excitation and a bandpass fil-
ter (447/60nm) to isolate emission. Fluorescence lifetime decays of
each cell were obtained through cell segmentation in CellProfiler,54

using an automated image segmentation pipeline previously
described.55 The number of cancer cells in each metabolic group is
summarized in Table S1.

B. NAD(P)H lifetime imaging of POLG macrophages

Experimental details for the polymerase gamma (POLG) murine
bone marrow-derived macrophage (BMDM) experiments including
isolation of cells, cell culture, and Seahorse metabolic flux assay are fully
described in the supplementary material. For NAD(P)H lifetime imag-
ing of wild-type and POLG macrophages, the macrophages were cul-
tured in DMEM supplemented with 10% FBS and seeded at a density
of 105 cells within 2ml of the culture media per 35mm glass-bottom
imaging dish 24h before imaging. Experimental groups included con-
trol and cyanide-treated wild-type (WT) and POLGmacrophages. Both
the WT and POLG macrophages were treated with NaCN (4mM) to
inhibit OXPHOS, and autofluorescence lifetime imaging was performed
after 5min. The NAD(P)H fluorescence lifetime images were captured
by a customized built multiphoton imaging system (Mariana, 3i) using
a 40� water immersion objective (1.1NA). The NAD(P)H fluorescence
was excited at 750nm with a power of �5 mW using a tunable (680–
1080nm) Ti:sapphire femtosecond laser (COHERENT, Chameleon
Ultra II) and detected with a photomultiplier tube (PMT) detector
(HAMAMATSU, H7422PA-40) with a bandpass filter (447/60nm).
The fluorescence lifetime decay was measured in the time domain with
a time-correlated single-photon counting (TCSPC) electronics module
(SPC-150N, Becker & Hickl). Each fluorescence lifetime image (256
� 256 pixels, 270� 270lm2) was acquired with a pixel dwell time of
50 ls and 5 frame repeats. The NAD(P)H fluorescence lifetime images
were analyzed by SPCImage (Becker & Hickl) to calculate the mean
NAD(P)H lifetime (sm) and export the NAD(P)H intensity image and
temporal point spread function (TPSF) image (256 � 256 � 256) with
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a spatial binning of 9 pixels. The mean lifetime NAD(P)H images (sm)
were created in SPCImage for visualization of the lifetime, but the CNN
models in this paper only use the raw lifetime decay data. The NAD(P)
H fluorescence decay image of each cell was obtained by segmentation
based on the cell mask generated from NAD(P)H intensity images
using Cellpose.55,56 The resulting number of macrophages imaged for
each group is summarized in Table S2.

C. Pre-processing and down-sampling of TPSF images

Each cell within each NAD(P)H FLIM image was extracted based
on the bounding box of its cellular mask to obtain an X-Y-T TPSF

image using MATLAB. Then, the following image processing steps
were performed in Python with the OpenCV package. The overall
workflow for TPSF image processing, training preparation, and CNN
model development is described in Fig. 5. First, the pixel values in the
cellular regions of each time frame image were summed to plot the
photon distribution as a function of time for each TPSF image. Then,
the cells were filtered using an entropy threshold at the time frame
with the maximum photon number to remove incomplete or poorly
segmented cells. The thresholds were defined based on the distribution
of entropy using a Gaussian approximation.34 To unify the image size,
all cell images were padded with borders of 0-values to be 40� 40 spa-
tial (X-Y) pixels for all 256-time points (T) (Fig. 5). The collective 40�

FIG. 5. FLIM image pre-processing steps and overview of model development (created with BioRender.com). Each cropped image of unique spatial dimensions � 256 time
frames pixels is padded to a uniform 40 � 40 � 256 pixel image and cropped to 21 � 21 � 256 pixels. The cropped images are retained in the original (Org) dimensions (21
� 21 � 256) and down-sampled in the time dimension via either a median (MEDD) or mean (MD) filter to 21 � 21 � 128 pixels. Representative TPSF curves demonstrate
the effect of the down-sampling procedure. The resulting dataset of �7500 cells is divided into training and test groups for CNN model development to identify cellular meta-
bolic activity from the FLIM images.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 016112 (2024); doi: 10.1063/5.0188476 8, 016112-10

VC Author(s) 2024

 29 M
ay 2024 13:56:35

pubs.aip.org/aip/apb


40 � 256 TPSF images of �7500 cells occupied�4 gigabytes of mem-
ory. To eliminate the background pixels from the TPSF images and
reduce the amount of data, a 21 � 21 � 256 square was extracted in
the center of the original image (40 � 40 � 256) to preserve the key
morphology of the cells in the spatial domain (Fig. 5). This cropping
size (21 � 21 pixels) was selected by analysis of the cell size distribu-
tion of the dataset (Fig. S1). Two down-sampling modalities were
developed to further reduce each image size to 21 � 21 � 128 pixels
while maintaining spatial and temporal information. First, mean and
median filters with a window of three pixels in the time domain were
applied to the original TPSF images to smooth the decay curve [Fig. S2
(a)]. Then, the odd time frames were extracted as the down-sampled
data [Fig. S2(a)]. The TPSF images down-sampled by the median filter
are defined as MEDD (Median Down-sampled), and those down-
sampled by the mean filter are defined as MD (Mean Down-sampled).

D. CNNmodel building, training, and evaluation

Two different CNN architectures were developed to predict meta-
bolic phenotypes of cancer cells. All models were created using the
machine-learning library Keras with a TensorFlow backend in Python
running on Jupyter Notebook on the platform Anaconda. First, a 3D
LeNet architecture36 with two convolutional layers and two pooling
layers was applied to build a model (FLI-LeNet) to predict cells as
either glycolytic or oxidative phenotypes. Then, another 3D LeNet
model (FLI-LeNet) was trained to perform three metabolic group clas-
sification: those dependent on glycolysis, OXPHOS, or glutaminolysis.
The second CNN architecture was developed based on the residual
neural networks (ResNet) structure,49 consisting of a convolutional
layer followed by two ResNet blocks. Each ResNet block is comprised
of two convolutional layers, and the weight layer learns residual func-
tions by comparing them to the layer inputs. The ResNet CNN model
(FLI-ResNet) was created to identify three metabolic activities of can-
cer cells: glycolysis, OXPHOS, and glutaminolysis. The parameters of
the 3D CNN models are described in detail in the supplementary
material.

For all models, the size of the input layer was 21 � 21 � 256 for
models trained with the original data or 21 � 21 � 128 for models
trained with down-sampled data. Cross entropy was set as the loss
function and monitored in each training epoch. The Adam optimizer
was used with an initial learning rate set to 10�3 and a batch size of 8.
As a preliminary test, the networks were normally trained for 100
epochs using an NVIDIA GeForce RTX 3080 GPU. 70% of the TPSF
images were randomly selected as the training dataset, 10% of TPSF
images were used as the validation dataset to monitor the performance
of models during training, and the remaining 20% of TPSF images
were selected as the testing dataset (Table S1). The training time varied
slightly, between 30 and 60 s per epoch, depending on the batch size
and original or down-sampled datasets.

E. CNNmodel evaluation

Once the best training parameters were determined, a fivefold
cross-validation of the models trained to 50 epochs was applied to
evaluate the robustness of the CNN models (Fig. 5). The prediction
performance of the test datasets was averaged across the fivefold vali-
dation. For the prediction of glycolytic cells and oxidative cells, the
results were presented in a confusion matrix, where glycolytic cells

were defined as the positive group, and the oxidative cells were defined
as the negative group. The accuracy was calculated as the ratio of cor-
rectly classified cells to the total number of cells. The precision was cal-
culated as the ratio of true positives to the sum of true positives and
false positives, and the recall was calculated as the ratio of true positives
to the sum of true positives and false negatives. Additionally, a receiver
operating characteristic (ROC) curve and the area under the ROC
curve (AUC) were obtained from the prediction results of the test data-
sets for each classifier.

For reporting the performance of the models to distinguish
among three metabolic pathways, the precision for each class was cal-
culated as the proportion of correctly predicted cells of that class out of
all cells predicted as that class. The recall for each class was calculated
as the proportion of correctly predicted instances of that class out of all
actual instances of that class in the dataset. The F1-score for each class
was calculated by the harmonic mean of precision and recall using the
formula F1� score ¼ 2 �ðPrecision �RecallÞ=ðPrecisionþ RecallÞ. An
overall precision, recall, and F1-score were obtained by averaging the
precision, recall, and F1-score for each class.

After the development and validation of the models on MCF7
cancer cell data, the two-class FLI-LeNet models were applied to the
WT and POLG macrophage FLIM images to predict the major meta-
bolic activity for each cell. From the model outputs, the percentage of
cells predominantly utilizing glycolysis or OXPHOS was calculated for
both the WT and POLG macrophages and their respective cyanide-
treated groups, to facilitate a comparison of the metabolic activities
among the different groups.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed description of fluo-
rescence lifetime analysis, CNN development, BMDM preparation,
Seahorse assay, dataset, and CNN performance.
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