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Sample multiplexing-based targeted path-
way proteomics with real-time analytics
reveals the impact of genetic variation on
protein expression

Qing Yu1, Xinyue Liu1, Mark P. Keller 2, Jose Navarrete-Perea1, Tian Zhang 1,
Sipei Fu1, Laura P. Vaites1, Steven R. Shuken1, Ernst Schmid3, Gregory R. Keele 4,
Jiaming Li1, Edward L. Huttlin 1, Edrees H. Rashan2, Judith Simcox 2,
Gary A. Churchill 4, Devin K. Schweppe 5, Alan D. Attie 2, Joao A. Paulo 1 &
Steven P. Gygi 1

Targeted proteomics enables hypothesis-driven research by measuring the
cellular expression of protein cohorts related by function, disease, or class
after perturbation. Here, we present a pathway-centric approach and an assay
builder resource for targeting entire pathways of up to 200 proteins selected
from >10,000 expressed proteins to directly measure their abundances,
exploiting sample multiplexing to increase throughput by 16-fold. The strat-
egy, termed GoDig, requires only a single-shot LC-MS analysis, ~1 µg combined
peptide material, a list of up to 200 proteins, and real-time analytics to trigger
simultaneous quantification of up to 16 samples for hundreds of analytes. We
apply GoDig to quantify the impact of genetic variation on protein expression
in mice fed a high-fat diet. We create several GoDig assays to quantify the
expression of multiple protein families (kinases, lipid metabolism- and lipid
droplet-associated proteins) across 480 fully-genotyped Diversity Outbred
mice, revealing protein quantitative trait loci and establishing potential lin-
kages between specific proteins and lipid homeostasis.

A foundational principle of cellular biology is that a cell’s genotype
drives its phenotype. This link is mediated by the proteome, with
variations in proteome status—often called theproteotype1—governing
phenotypes of all kinds that manifest as cellular function and dys-
function. Thus, a cell’s proteotype encodes valuable insights into cel-
lular function and clinical applications including disease diagnosis and
progression monitoring. However, in order to extract these insights,
approaches are needed to accurately and consistently profile the sta-
tus of the proteome as well as account for variability at multiple levels

including genetic diversity and environmental heterogeneity as well as
technical variability. To overcome these hurdles, these approaches
also need to contend with large numbers of samples.

To date, numerous targeted protein/pathway assays have been
proposed for clinical uses, such as disease diagnosis and progression
monitoring2,3. Targeted pathway proteomics aims to explore families
of proteins that represent entire signaling pathways and gene cate-
gories with minimal sample input and instrument time but with max-
imum coverage and reproducibility. Commonly, the measurements
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are obtained through dedicated acquisition of tandem mass spectra
(MS/MS) of peptides across a chromatographic gradient—sometimes
called parallel reaction monitoring (PRM)4,5. Many dozens of peptides
can be targeted in a single assay, and either retention-time scheduling
or sequenced-matched, stable-isotope-labeled synthetic peptides are
used as triggering events for the dedicated PRM and MS/MS scans6,7.

Sample multiplexing in proteomics through the use of isobaric
tagging reagents (e.g., iTRAQ and TMT) is a powerful approach to
increase the throughput and accuracy of protein quantification. Tan-
dem mass tag (TMT) reagents allow for increased throughput as both
16-plex and 18-plex reagent sets are commercially available8,9. Pre-
viously, we combined sequenced-matched synthetic peptides as trig-
gering events for TMT-labeled plexes10,11. However, this approach
required a large investment in peptide synthesis and characterization
such that assays cannot be created on the fly.

An instrument application programming interface (iAPI) is
available for Orbitrap Tribrid mass spectrometers that permits the
external computer to perform real-time analytics and trigger the
collection of new scans on demand. A tribrid mass spectrometer is
effectivelymultiplemass spectrometers combined, enabling the user
to select multiple modes of fragmentation and to detect precursor
and product ions using multiple mass analyzers that vary in speed,
sensitivity, and resolution12,13. They thus have thepotential to execute
assays highly customized to each analyte. While these instruments
usually run pre-defined methods, the iAPI enables Tribrid mass
spectrometers to respond adaptively to the idiosyncrasies of each
sample. Applications include real-time protein database searching
with scan decisions made in milliseconds based on peptide
sequence14,15 as well as adaptive decision-making in targeted pro-
teomics assays11.

The Diversity Outbred (DO) mouse model is a powerful genetic
resource to systemically evaluate how genetic variation influences
protein expression and physiological phenotypes16. Moreover, genetic
effects can be conserved betweenmouse and humanhomologs and be
linked to human diseases17,18. This model is often not feasible for
proteome-wide studies sincemany hundreds of animals oftenmakeup
a cohort of DO mice to provide statistical power, and targeted pro-
teomics could play an important role in analyzing large numbers of
samples.

Here we present a next-generation targeted proteomics platform
capable of utilizing TMT labeling with no need for synthetic peptide
internal standards. The approach, termed GoDig, distills data from
previously collected proteome-wide experiments into elution and
spectral libraries to make real-time decisions via the iAPI during tar-
geted assays. We removed the need for internal standard peptides so
that nearly any previously observed peptide can be targeted, mini-
mizing the effort needed for assay development. By performing real-
time elution calibration, hundreds of target analytes can be multi-
plexed into single assays. We compiled the information needed to
target any list derived from ~10K human proteins and ~7 K mouse
proteins as a resource accompanied by the GoDig assay builder web-
site (https://wren.hms.harvard.edu/godig/) to simplify assay con-
struction. We applied GoDig to measure protein abundances and
investigated the impact of genetic variation on protein expression
across 480 livers from the Diversity Outbred mouse model fed a high-
fat diet. Each list of proteins was quantified across all 480 animals in
<60 h, which is equivalent to 7.5min of instrument time per sample.
We identified previously unknown protein quantitative trait loci
(pQTL). By interrogating a lipidomics dataset in these same animals19,
pQTL were connected to lipid QTL and potential key modulators of
lipid homeostasis were identified. In this way, we demonstrated that
rapidly deployed targeted assays can measure the state of the pro-
teome relating genetic variation to lipid phenotypes across a popula-
tion of nearly 500 mice. GoDig has the potential to fundamentally
transform targeted proteomics and serves as a cornerstone for the

future development of a wide variety of pathway-specific measure-
ment assays.

Results
GoDig assay design for measuring protein expression across
entire pathways
To create each GoDig assay using the iAPI software for real-time ana-
lytics (Fig. 1a), we needed to target hundreds of peptides during an
analysis without the use of internal standard peptides (ISPs). These
ISPs provide two pieces of critical information for each peptide: (1) a
precise retention time (RT), and (2) a reference peptide spectrum for
identification11,20. RT scheduling can allow the multiplexing of target
analytes into batches at the expected elution times, and the reference
spectrum guards against false positive quantifications21,22.

To eliminate the need formaking synthetic peptides and facilitate
the use of any previously detected peptide as RT goalposts for better
chromatographic resolution, we extended the idea that peptide elu-
tion orders remain relatively robust across runs regardless of liquid
chromatograph (LC) variations23 and implemented a real-time elution
calibration strategy within GoDig. Relative elution orders of all pep-
tides from deeply fractionated datasets are binned to certain RT
intervals (e.g., 30 s) to construct an elution library. Meanwhile, all
peptide spectral matches are converted into a spectral library for
online spectral matching (identification). Thus, using GoDig, in a tar-
geted single-shot experiment, the most intense peaks from an
MS1 scan are selected only periodically, and subsequentMS2 scans are
collected and searched using a real-time database search algorithm
(Comet)14. The elution information for the resulting peptide IDs is
extracted from the elution library to calibrate the elution in real-time
(Fig. 1b; Supplementary Fig. 1). It is worth noting this strategy is highly
robust to different LC gradients (Supplementary Fig. 2a, b, j, k), sample
types (Supplementary Fig. 2a, b) and even swapping of isobaric label-
ing reagents (i.e., 11- or 16-plex TMT reagents) (Supplementary Fig. 2c,
d). In addition, elution order was found to be stable across different LC
stationary phases (Supplementary Fig. 2f–i).

Once the current elution point is calibrated, all peptide targets
predicted to elute within a specified window are monitored con-
tinuously via rapid PRM scans in the ion trapmass analyzer (IT-PRMs).
GoDig has real-time access to each IT-PRM and upon successful
matchingof≥6 fragment ions, it prompts a high-resolutionMS2 scan in
the Orbitrap (OT-MS2). The resulting OT-MS2 is matched using cosine
similarity scoring to the library spectrum24,25. Fragment ions are also
examined for purity (no interfering peaks) and then selected for a
synchronous precursor selection (SPS) MS3 scan26 to retrieve quanti-
tative information with minimal interference (Fig. 1c, g). Because we
have high certainty of the identification and elution position, the
inserted SPS-MS3 scans canhaveultra-long ion accumulation times (up
to2000milliseconds) to dramatically increase sensitivity.We alsonote
the spectra from TMT11- and TMTpro16-labeled peptides are highly
comparable, making it possible to transfer libraries among experi-
ments using either reagent (Supplementary Fig. 2e).

Validating the GoDig method with spike-in yeast alcohol dehy-
drogenase 1 (ADH1) protein
To validate GoDig, we labeled and combined tryptic peptides derived
from a yeast protein standard (ADH1) to have final ratios of 1, 2 or 4 in
triplicate using themiddle 9 channels of the TMT11 reagents. Tomimic
a highly complex background, we labeled tryptic peptides fromwhole
human HCT116 lysate at a 1:1 ratio across the 11 channels. ADH1 pep-
tides were then serially diluted at known concentrations and spiked
into 0.5 µg of HCT116 prior to LC-MS-GoDig analysis. The on-column
amount was defined by the absolute amount (in fmols) of ADH1 in the
highest TMT channel (ratio of 4), and the highest dilution (1X) con-
tained 19 fmol in that channel. Elution and spectral libraries were built
using data from duplicate injections of 1X ADH1 peptides in 0.5 µg
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Fig. 1 | GoDig enables real-time profiling for targeted proteomics. GoDig uses
real-time analytics to locate each target analyte relative to prominent background
ions present in each sample a–d. The resulting quantitation is more sensitive than
competing MS1-based approaches (e) and results in high-quality identification (g)
and quantification (f) of each analyte. a GoDig governs several functionalities
prompting a variety of scans to perform multiplexed targeted proteomics: (1)
elution calibration in real-time using abundant MS1 peaks; (2) detection: coelution-
triggered parallel reaction monitoring (PRM) scans for elution monitoring; (3)
identification: high-resolution spectrum library matching; (4) quantification: syn-
chronous precursor selection (SPS) and ultra-long injection MS3 collection.
b Episodic elution position prediction. Periodically, a handful of MS2 spectra are
taken to precisely determine position. c Once the elution window is calibrated,
GoDig triggers fast PRM scans for lists of peptide targets in the window tomonitor
peptide elution without MS1 detection. If a target is detected, a high-resolution
MS2 scan is collected for spectrum librarymatching and SPS ion selection, followed
by MS3-based quantification. d Real-time elution calibration using ordered elution

is robust to gradient changes. The orange dots represent the calibrated elution
points, and the black line represents the LC gradient. e GoDig is appreciably more
sensitive than MS1-based detection. Yeast ADH1 peptides (labeled with TMT at
different ratios) were spiked into a TMT11-labeled HCT116 cell line background
(0.5 µg on column). A total of 12 ADH1 peptides were targeted. Points represent
mean ± s.d (n = 2 independent experiments). Source data are provided in the
Source Data file. f The quantification results of selected dilutions. Bars represent
mean ± s.d. (n = 3 independent measurements), **p ≤0.01 (two-sided Student’s t-
test), *ADH1 on-column amount in the highest TMT channel. Dotted lines represent
expected ratios. Source data are provided in the Source Data file.gAn example of a
GoDig inserted quantification event from the sample of 250X (80 amol) dilution. A
trigger MS2 for CCSDVFNQVVK matched 16 fragment ions and triggered a high-
resolution targetMS2.Matched ionswere cosine-correlated to the library spectrum
(similarity = 1.00), and top fragment ions were selected forMS3 fragmentation and
quantification. GoDig prompted the instrument to accumulate signal for 2000ms
for this quantification event.
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HCT116 backgrounds using a 90-min gradient. Twelve ADH1 peptides
were identified and subsequently targeted in serial dilutions of up to
1000X (20 attomoles on-column), and the same 90-min gradient or a
shorter 60-min gradient was used. For comparison, we also acquired
data using the MS1-based detection with real-time search (RTS)-
enabled shotgunproteomics approachas a reference14,27. Regardless of
the gradient used, GoDig successfully calibrated elution profiles on the
fly (Fig. 1d), showing the robustness of the strategy to different gra-
dients. Because GoDig is not dependent on MS1 detection, ADH1 was
quantifiedbymultiple peptides throughout the dilution series (Fig. 1e).
Even at the 1000Xdilutionwith only 20 attomoles of ADH1 on-column,
GoDig successfully quantified 3 peptides (Fig. 1e), achieving good
accuracy and statistical power to differentiate triplicates of different
ADH1 amounts (Fig. 1f). These data demonstrate that despite the pre-
cursors of targets being far below the general detection limit for MS1-

based triggering, GoDig still quantified the targets of interest. To dis-
cern subtle changes and reduce interference, GoDig allowed up to
2000 ms ion accumulation time for very weak signals, as exemplified
by the ADH1 peptide, CCSDVFNQVVK, with 80 attomoles on col-
umn (Fig. 1g).

Benchmarking GoDig against deeply fractionated datasets from
four human cell lines
After the initial validation of GoDig using spike-in ADH1 protein, we
generated tryptic peptides from biological quadruplicates of four
human cell lines—RPE1, U2OS, HEK293T and HCT116 (Fig. 2a). Peptides
were labeled with TMTpro16 reagents. We first created a library using
an unfractionated sample (Lib1) and analyzed it in duplicate to con-
struct libraries. Without sample fractionation, detected peptides are
abundant species in Lib1 and their elution variances are only minimal.
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achieved across all four families (d) and significant variations in abundance were
observed across cell lines for each protein family (e). Quantitative profiles were
consistent betweenmethodologies (f, g), with GoDig performance equivalent to, if
not better than, that achieved via RTS with fractionation. a Biological quad-
ruplicates of RPE1, U2OS, HEK293T, and HCT116 were processed and labeled with
TMTpro16. To construct the libraries for elution prediction and spectral matching,
24 fractionswere generated, and eachwas analyzedwith a 2-h gradient. The library
consisted ofmore than 10,000 targetable proteins.bGoDig targetedprotein assay
website (http://caribou.med.harvard.edu/godig/) was used to construct different
protein assays. Input can be either gene symbols or entire pathways (e.g., GO

terms, Reactome). c Real-time elution calibration in a 2-h single-shot GoDig
experiment using the elution library constructed across 24 fractions. d GoDig
experiments targeting four separate gene lists were collected. Up to 100members
were selected from each category [gene lists obtained from MSigDB31, 58]. Two
technical replicates were collected using GoDig or MS1-detection-based RTS1, and
high reproducibility was achieved.GoDig quantifiedmore than 94%of the proteins
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tering of all proteins quantified by GoDig from four targeted lists. f Correlation
between GoDig and fractionated RTS (RTS24) protein quantification. The fold
change represents the ratio between the mean of a single cell line and themean of
the other 3 cell lines. The Spearmancorrelation is 0.93. Source data are provided in
the Source Data file. g Example bar charts for protein quantifications using either
GoDig (2-h analysis) or RTS24 (48-h analysis). Source data are provided in the
Source Data file.
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Therefore, we were able to target 2600 peptides in a single GoDig
experiment (Supplementary Fig. 3b, c; Supplementary Data 6),
achieving comparable target multiplexing capacity as two previous
targeted strategies5,28 while dramatically increasing sample multi-
plexing (16x) and quantification accuracy by incorporating TMT-based
isobaric labeling9,29 and the SPS-MS3 technology26. However, similar to
the previous reports5,28, unfractionated samples, and the resulting Lib1
covered only the abundant fraction (top 20–30%) of the whole pro-
teome (Supplementary Fig. 3d, e, f). The rest of the proteome
remained inaccessible due to the massive expression dynamic range,
spanning several orders of magnitude.

As our goal was to target proteins at all abundances, we bench-
marked its utility by constructing libraries from a deeply fractionated
sample. 24 fractions of the same TMTpro16-labeled 4 cell line
sample were collected using offline basic pH reversed-phase
chromatography30. Each fraction was analyzed using a 2-h method.
Data from 24 fractions were searched and filtered to a protein false
discovery rate of 1%. We identified 129,679 peptides from 10,071
expressed proteins (~13 peptides/protein; Supplementary Data 7) for
inclusion in thedeep library (Lib24) (Fig. 2a). Using theweb-basedGoDig
assay builder (Fig. 2b; Supplementary Fig. 9), we built assays in silico for
four selected MSigDB protein categories31, namely protein kinases,
proteolysis, apoptosis and p53 signaling, allowing initially up to 100
protein targets in each category using 3 peptides (if available) for each.

To calibrate the elutionwindow,periodically (every 15 s), the top6
peaks in an MS1 scan were fragmented, identified via real-time data-
base search (RTS), and assigned precise elution positions. Compres-
sing 24 fractions into a single shot, GoDig still presented robust elution
calibration (Fig. 2c; Supplementary Fig. 2j, k).We initially elected to use
wider elution windows (~3.5min) than the experiments targeting 2600
peptides using Lib1 (~0.5min) for targeting each peptide in Lib24 to
account for elution variation across the 24 fractions (Supplementary
Fig. 2j, k) used for the libraries, and we allowed ultra-long ion accu-
mulation (up to 2000ms) to assure successful and accurate
quantification.

To evaluate the sensitivity and reproducibility of GoDig when
targeting proteins in the Lib24, we selected four categories of proteins
and two technical replicates for each category were collected using
either GoDig or RTS analyses of the unfractionated sample (RTS1). On
average, 94% of targets were quantified across the four categories
using GoDig, as opposed to just 29% by RTS1 (Fig. 2d). Despite the
significant improvement in sensitivity, the two technical replicates
using GoDig had 88% of the proteins quantified reproducibly on
average (Fig. 2d), whereas the two RTS1 technical replicates only
commonly quantified 17% of the targets, highlighting the notably
better reproducibility by GoDig. Comparing quantification of the
single-shot data collected by GoDig to the RTS data collected with 24
fractions (RTS24; Supplementary Data 1) revealed a strong correlation

Fig. 3 | Evaluating the upper limit for proteome-wide targeting with lists of
~200 proteins. Low abundance proteins are much more difficult to quantify, and
they require ultra-long accumulation times. Using lists of 200 or more proteins is
possible, but injection times are limiting across the full dynamic range of the
proteome. a–d 254 protein kinases (479 peptides) were selected from the Lib24
(~10,000 proteins) built with the TMTpro16-labeled four human cell sample as
targets, and four consecutive GoDig runs were performed using ~1 µg unfractio-
nated sample while enabling the close-out feature. Close-out removes peptides/
proteins from the list once they have been quantified. In total, 216 kinases were
quantified in a single GoDig experiment, and 96% of all targeted kinases were
quantified using several injections with close-out. a Kinase subtypes targeted and
quantified. Sourcedata areprovided in theSourceDatafile.bProteinquantification
events in the kinome assay including multiple GoDig injections with close-out.

Source data are provided in the Source Data file. c Hierarchical clustering shows
good separation by cell type. dGoDig generated result in good agreement with the
result acquired by analyzing 24 fractions of the sample with RTS (RTS24) (Spear-
man’s ρ =0.92). The fold change (FC) is calculated as the ratio of the mean of one
cell line compared to the mean of the other three cell lines. Source data are pro-
vided in the Source Data file. e, f Twenty gene lists were selected from the 10,000-
protein library. Each list contained 200 randomly selected targets, each with up to
three peptides if available. In total, 4000 proteins (20 × 200 member lists) were
targeted. e Three consecutive injections were performed with the close-out func-
tion enabled to assess coverage. On average 93% of all targets were successfully
quantified (Source data are provided in the Source Data file), and f their natural
abundance spanned full dynamic range of the proteome sample.
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with a Spearman ρ =0.93 (Fig. 2f, g), even though GoDig needed only
1 µg total peptide and a 2-h single-shot run for each 16-plex experiment,
whereas RTS24 consumed 100 µg total peptide for fractionation and
each of the 24 fractions required a 2-h analysis. Hierarchical clustering
with the GoDig-quantified proteins showed clear separation among
cell types as expected (Fig. 2e).

Our larger biological goal is to target entire families and pathways
of proteins, whichnecessitates anevaluation of the number of proteins
that can be targeted in a single assay. The number of proteins that can
be targeted is limited by the ultra-long signal accumulation times
allowed for each individual target to assure proteome-wide sensitivity
and accuracy as well as howmany targets are concurrently eluting at a
certain time point. Having targeted up to 100 proteins (~300 peptides)
with widely varying native abundances across the four categories
studied, we next sought to evaluate the use of larger lists of proteins.
We performed two experiments. Since protein kinases are a popular
protein class for expression profiling, we targeted 254 protein kinases
using GoDig (Fig. 3a).With a single run, GoDig quantified 216 targets in
2 h, and the total number of quantified kinases increased to 243 (96%)
after adding data from four consecutive injections using a close-out
functionality to increase sensitivity (Fig. 3b).

As a more representative benchmark, we generated 20 separate
target lists, each containing 200 random proteins with distinct endo-
genous abundance levels derived from more than 10,000 expressed
proteins (Fig. 3f). We allowed up to three peptides to be used for
quantification of each target and collected three consecutive runs for

each list closing out previously quantified proteins (See Methods). In
all, 81% of the list for single injection experiments were detected and
quantified. Over 93% of all targeted proteins were successfully quan-
tified after three injections (Fig. 3e), and their endogenous expression
levels spanned the full dynamic range of the proteomeas suggested by
the estimation of their absolute abundances (iBAQ values)32,33 (Fig. 3f).
We observed <10% CV among biological replicates (Supplementary
Fig. 4a) and a good correlation (Spearman ρ = 0.91) to the RTS data
collected with 24 fractions (Supplementary Fig. 4c). These data
demonstrate smaller lists (up to 100 members) allow for deeper list
coverage at full proteome depth.While 200-member lists are possible,
modifications such as the limiting the number of peptides per protein
are necessary to achieve >90% list coverage.

Investigating the consequences of genetic variation on protein
expression in Diversity Outbred (DO) mouse livers
Powerful mouse models are available to biologists to study the
genotype-phenotype relationship often including hundreds of animals
with full genotyping andmeasuredphenotypes16,34. For example, Chick
and coworkers performed a large-scale untargeted proteomics study
andmapped protein quantitative trait loci (pQTL) using 192 DOmouse
livers35, and Linke and coworkers also mapped thousands of lipid QTL
in liver using DOmice19. We weremotivated to build upon theseworks
to fill in the gaps for certain protein families that are especially relevant
to lipid homeostasis biology as the mice were fed a high-fat diet. We
first performed a pilot study exploring the full proteome expression of

Fig. 4 | Targeted pQTL analyses of livers from 480 genotyped DO mice fed a
high fat diet. a DO mouse livers were obtained from the Keller et al. study36 and
processed into thirty TMTpro16plex experiments. For GoDig analyses, four tar-
geted gene lists included lipid metabolism-related proteins, kinases, putative lipid
metabolismmediators and lipiddroplet proteinswere generated. In addition, livers
from 64 animals from the 8 DO founder strains (n = 8 animals for each strain) were
processed and full proteome profiling was obtained using a real-time search (RTS)-
based shotgun approach14. b The new LOD scores are higher using GoDig across
480 mice than the scores generated using 192 mice from Chick et al.35. The inset
shows the great pQTL positional correlation between the re-analysis using GoDig

and the result by Chick et al.35. Source data are provided in the Source Data file.
c Example of APOH protein expression measured by GoDig across the full dataset
(n = 480 animals). DOmice are arranged by TMTpro16 labeling order. Mice with ≥1
predicted allele fromWSB are colored purple and have higher standardized APOH
expression. Source data are provided in the Source Data file. d GoDig identified a
local pQTL forAPOHon chromosome2.The founder allele effects from thepQTL in
the DO population is highly correlated with the measured abundance in the eight
founder strains (n = 8 animals for each strain). Bottomborder, interior line, and top
border in the box plot represent the 1st quartile, median, and 3rd quartile,
respectively. Source data are provided in the Source Data file.
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the 8 founder strains (n = 8 for each founder; four males and four
females) fromwhich theDO cohort was derived. Approximately 75%of
all quantified liver proteins (5566 out of 7397) had significant differ-
ences in at least one strain relative to the C57BL/6J mouse (Supple-
mentary Fig. 5; Supplementary Data 2). Such expression differences in
founders support the presence of regulatory genetic variants (pQTL).
We found it attractive to leverage the founder strain resource, the
existing pQTL liver dataset35, and the existing lipid QTL dataset19 to
measure pathway-wide how genetic variation affects lipid
homeostasis.

Using GoDig, we focused on specific subsets of proteins across
480 livers from DO mice fed a Western-style diet high in fat and
sucrose (Fig. 4a; Supplementary Fig. 6)36. Peptides from the 480 livers
were randomly assigned to 30 TMT groups and labeled with the
TMTpro16 reagents. We first tested GoDig by targeting 50 lipid
metabolism-related proteins, among which 49 already had known
pQTL. The 50 target proteins were quantified by GoDig using a 2-h
GoDig method, and all 480 mice were surveyed over 60 h (Supple-
mentary Data 3). All targets achieved 100% data completeness. Most
known pQTL (44 out of 49 [90%]) were recapitulated, andweobserved
remarkably increased log odds ratio (LOD) scores reflecting increased
statistical power (Fig. 4b). Protein apolipoprotein H (APOH) exempli-
fied a local pQTL where a genetic variation in the APOH locus on
chromosome 11 governed the protein’s expression. Genetic mapping
indicated that DOmicewith allelic contribution from theWSB founder
strain presented elevated levels of APOH (Fig. 4c). The predicted allelic
contribution at the pQTL agreed with the expression profile in the
founder strain data (Fig. 4d). In addition to recapitulating knownpQTL,

seven new pQTL were also identified, including five distant and two
local pQTL (Supplementary Data 4).

We next sought to identify pQTL that weremissed in the previous
study35 but might be measured by targeted approaches efficiently
across a larger DO mouse cohort to more completely account for the
genetic variation and phenotypic diversity. A GoDig assay was built to
target 50 kinases without previously annotated pQTL, yet each of the
50 kinases presented notable changes in the founder strain proteome-
wide resource (Supplementary Data 2), suggesting that pQTL were
present. GoDig achieved an average of >99% data completeness. As a
comparison, we ran the same samples using a real-time search (RTS)
method with the identical gradient. The average data completeness
with RTS was only 38%, and 16 of the targets were never quantified in
any sample (Fig. 5a). We identified 13 pQTL that eluded previous
identification. For example, PI4K2B abundance was regulated by a
local pQTL on chromosome 5, and the effect was likely imposed
through a transcriptional mechanism because a corresponding local
eQTL has been reported35. The pQTL mapping suggested alleles from
three founder strains (CAST, PWK and WSB) harbor genetic variants
that cause higher PI4K2B expression (Fig. 5b, c; Supplementary Fig. 7).
Besides local genetic effects, we observed several distant pQTL,
including one for TRP53RKB (Fig. 5b, d). TRP53RKB is a member of the
EKC/KEOPS complex, and the distant pQTL residedonchromosome 12
near 102.7 Mbp (Fig. 5e). Allelic signatures predicted positive con-
tributions from founder strains CAST, PWK and WSB and agreed with
the measured founder strain abundance (Fig. 5d, f). Upon closer
investigation, we found that the Gon7 gene, which encodes GON7 as a
subunit of the complex, is within the pQTL locus, and two other

Fig. 5 | GoDig identifies previously undetected pQTL across 50 targeted kina-
ses. Experimental overview is illustrated in Fig. 4a. Fifty kinases, including forty-six
that had no annotated pQTL in Chick et al.35, were targeted and measured with
GoDig. aHeatmap of kinase detection across the 480 samples. Data were collected
using GoDig or single-shot RTS (RTS1) and a 2-h method/plex. Gray indicates the
protein was not quantified in any sample. Less than 30% of kinases were con-
sistentlydetected across the 480 samples usingMS1-baseddetection (RTS1).bNew
pQTL identified by GoDig for the 50 targeted kinases. c Genome scan for PI4K2B
pQTL. LOD score represents the statistical strength of genetic association. PI4K2B
abundance is regulated by a local pQTL on chromosome 5. PI4K2B abundance is
likely regulated through a transcriptional mechanism because a corresponding
local eQTL was reported by Chick et al.35. The founder allele effects of the eQTL is
consistent with that of the pQTL identified by GoDig (Supplementary Fig. 7).
d TRP53RKB protein expression across the 480 DOmice are arranged along the x
axisbyTMTpro16 labelingorder. The inset shows theboxplot ofTRP53RKBprotein

abundance grouped by the predicted presence of alleles from CAST, PWK orWSB,
which are expected to have higher TRP53RKB expression. Bottom border, interior
line, and top border in the box plot represent the 1st quartile, median, and 3rd
quartile, respectively. Source data are provided in the Source Data file. e Genome
scan for TRP53RKB. TRP53RKB abundance is regulated by a distant pQTL on
chromosome 12. f Predicted founder allele effects for TRP53RKB kinase across the
DO population is highly correlated with the observed founder protein abundance
(n = 8 animals for each strain). Bottom border, interior line, and top border in the
box plot represent the 1st quartile, median, and 3rd quartile, respectively. Source
data are provided in the Source Data file. g The abundance of KEOPS complex
subunits OSGEP, TRPKB and TRP53RKB are regulated by a distant pQTL on chro-
mosome 12 around 102.7 Mbp. The transcript abundance of the core complex
member, Gon7, is regulated locally by the same locus, consistent with Gon7 being
the core regulator of the three other subunits.
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Fig. 6 | Assigning drivers to previously reported lipid QTL detected in DO
mouse livers by Linke et al.19. a Example of two lipid QTL that map to the same
locus on chromosome 8. GoDig analysis identified a local pQTL regulating the
abundance of CES2H and the abundances of two lipids with unknown identities.
Based on functional annotation of CES2H and its homologs andmass spectraof the
two unknown lipids, the two lipid species are putatively identified as acylcarnitine
species with molecular formulas C14H26NO6 (e.g., pimeloylcarnitine) and
C13H24NO6 (e.g., methylglutarylcarnitine) (Supplementary Fig. 8). b Liver protein
abundance ofCES2H in the 8 founder strains (n = 8 animals for each strain). Bottom
border, interior line, and top border in the box plot represent the 1st quartile,
median, and 3rd quartile, respectively. Source data are provided in the SourceData
file. c Founder allele effects observed at the QTL for the two unknown lipids and
local pQTL for CES2H. The lipid QTL have allele effects that are negatively corre-
lated with that of CES2H (mean Pearson R: −0.98). Source data are provided in the
Source Data file. d Mediation analysis of the two unknown lipids’ levels through

CES2H results in ~95% LOD score reductions. e CES2H abundance in DO livers is
negatively correlatedwith UNK: 304.17487 (R = −0.66). Source data are provided in
the Source Data file. f A cis-pQTL on chromosome 7 regulates ABHD2 abundance
and ABHD2 further regulates abundances of four phosphatidylcholines (PCs).
g Protein abundance of ABHD2 in eight founder strains (n = 8 animals for each
strain). Bottom border, interior line, and top border in the box plot represent the
1st quartile, median, and 3rd quartile, respectively. Source data are provided in the
Source Data file. h Founder allele effects estimated at the QTL for 4 PCs and local
pQTL for ABHD2. The lipid QTL have allele effects negatively correlated to that of
ABHD2 (mean Pearson R: −0.95). Source data are provided in the Source Data file.
iMediation of 4 PC lipid levels throughABHD2 reveals ~90% LOD score reductions.
j ABHD2 abundance in DO livers is negatively correlated with PC:40.9 (R = −0.58).
*indicatesquantitative valuesobtained fromLinkeet al.19. Source data are provided
in the Source Data file.
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complex subunits, OSGEP and TPRKB, also have distant pQTLpointing
to the same locus. An eQTL with allele effects matching the distant
pQTL was observed for the Gon7 transcript (Fig. 5g). Therefore, we
infer that the EKC/KEOPS complex subunits are modulated by local
genetic variants in Gon7 in the liver.

Identification of putative protein modulators for hepatic lipid
metabolism
Proteins are essential functional units linking genotype to phenotype.
A recent lipidomics study by Linke and coworkers reported thousands
of liver lipid QTL with unknown gene and protein drivers19. To bridge
the gap between genetic variants and lipidmodulation, we selected 50
proteins that were within some of these liver lipid QTL loci and had
founder strain abundances similar to the allele effects of the lipidQTL.
After GoDig analysis, we identified 41 pQTL (Supplementary Data 4).
Two examples of putative lipid modulators are CES2H (Fig. 6a) and
ABHD2 (Fig. 6f). Two lipidswith unknown identities, labeledpreviously
as UNK:304.17487 and UNK: 290.15878, had QTL mapped to chromo-
some 8 in the region of the gene, Ces2h. CES2H abundance in the
founder strains was negatively correlated with the inferred allele
effects of the lipids (Fig. 6b, c). A local pQTL for CES2H was also
detected using GoDig, with matching allele effects (Fig. 6c). We
included CES2H abundance as a covariate in the lipid QTL model and
examined how each QTL LOD score changed (Supplementary Data 5).
If a protein’s levels were co-regulated with a lipid’s abundance, then
regressing out its abundance during QTL scanning should result in a
reduced LOD score. The inclusion of CES2H abundance caused ~95%

reduction of each lipid’s LOD score, and the near-complete reduction
suggested a primary regulatory role for CES2H. Correspondingly,
CES2H abundance was negatively correlated with each lipid’s abun-
dance (Pearson R = −0.66 with UNK:304.17487 and −0.55 with
UNK:290.15878) (Fig. 6e; Supplementary Fig. 8c).

We next used the gathered genotypic, proteotypic and pheno-
typic information to assist in the identification of the unknown lipids.
CES2H belongs to a protein family of 8 mouse carboxylesterases.
Although the specific function of CES2H has not been fully elucidated,
the family and its human homolog are known to possess acylcarnitine
(AC) hydrolase activity37,38. We extracted MS2 scans for the lipids from
the lipidomics data, and characteristic ions of acylcarnitine at m/z
60.08 (trimethylamine), 85.03 (C4H5O2

+), the neutral losses of 59 and
161Da corresponding to the loss of the trimethylaminemoiety, and the
loss of the carnitine backbone were present in the scans (Supple-
mentary Fig. 8a, b)39,40. Therefore, we identified the two unknown
lipids as putative AC species with ion formulas C14H26NO6

+ (e.g.,
pimelylcarnitine) and C13H24NO6

+ (e.g., methylglutarylcarnitine).
Similarly, we found a local pQTL for ABHD2 on chromosome 7, within
the same locus as the QTL for four phosphatidylcholines (PCs). ABHD2
abundance in founder strains and its inferred allele effects from the
480 DO mouse livers negatively correlated with those of the four PCs
(Fig. 6g, h). Correspondingly, ABHD2 abundance negatively correlated
with the PCs’ abundances across 480 DO livers (Fig. 6j and Supple-
mentary Fig. 8d–f. Mediating PCs’ abundances through ABHD2 led to
LOD reductions ranging from 82 to 90% (Fig. 6i), consistent with
ABHD2 inhibiting PCs.
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Fig. 7 |Mediationof lipidQTL reveals a key regulator for lipid droplets.The four
GoDig analyses targeting 220 proteins across 480 mouse livers were combined.
Each protein was evaluated as a potential mediator of QTL for 2,269 lipids in the
livers from Linke et al. Mediation results were filtered using an LOD score reduction
>50% and z-score < −4. Resulting protein-lipid pairs were considered as being co-
regulated. aBar chart representing the numberof lipids fromLinkeet al.withwhich
each protein is co-regulated. The top 10 proteins are shown. Proteins known to
have lipid droplet localization are in red text. Lipids are colored based on cate-
gories.bGene and pQTLpositions of the top 6 proteins with themost co-regulated
lipids and identified pQTL. Five proteins (AIFM2, DHRS3, HSD17B7, HSD17B13 and
RHD10) have a distant pQTL mapping to a hotspot on chromosome 18 at 60 Mbp.

c The Gm4951 gene is within the hotspot on chromosome 18 and is a potential
regulatory protein for lipid droplet homeostasis. A cis-pQTL for liver GM4951 is
consistent with it being the key regulator for the abundance of 5 lipid droplet-
related proteins that have distant pQTL at the same locus. d Allele effects of the
distant pQTL of AIFM2, DHRS3, HSD17B7, HSD17B11, HSD17B13 and RHD10 are
positively correlated among themselves (mean Pearson R =0.93), whereas they are
negatively correlated with that of the local pQTL of GM4951 (mean Pearson
R = −0.95). e Protein abundancemeasurements in AML12WT andAML12GM4951, treated
with non-targeting control (NTC) or siGM4951 (n = 3 biological replicates). Two
sided Student’s t-tests were performed. p*<0.05, **p <0.01, ***p <0.001. Source
data are provided in the Source Data file.
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Identifying a potential modulator for hepatic lipid storage
To further explore lipid homeostasis biology, we sought to identify
drivers of lipid droplet formation in liver by integrating genotype,
proteotype and phenotype. Thus, we quantified using GoDig 70 pro-
teins annotated to the lipid droplet proteome41. In total, 31 pQTL were
identified with a q-value < 0.1, including 17 that were not annotated by
Chick and colleagues35. We hypothesized that lipids primarily localized
in lipid droplets would covary with proteins having a similar com-
partmental distribution. We included all 220 proteins quantified so far
by GoDig and treated each one as a covariate to perform mediation
analysis for eachof the reported 2269 lipidQTL19. Proteinswere ranked
according to the number of lipids with which they were co-regulated
(LOD reduction>50% and Z-score < −4). Notably, 8 out of the top 10
proteins with themost co-regulated lipid QTL had known lipid droplet
localization (Fig. 7a; Supplementary Data 5)41. Most of the covarying
lipids with known identities are triglycerides (Fig. 7a), consistent with
them being the major component in lipid droplets42. We also noted
that 5 of the top 10 proteins haddistant pQTLmapping to a hotspot on
chromosome 18 at 60 Mbp (Fig. 7b), indicating the existence of a key
lipid droplet driver within this locus. A recent study by Schwerbel
et al.43, proposed GM4951 (a.k.a IFGGA2) as a regulator of hepatic lipid
storage, and the Gm4951 gene is within the tightly linked cluster of
pQTL on chromosome 18. GM4951 displays a lysosomal/endosomal
profile when mice are fed a low fat diet but redistributes primarily to
lipid droplets when fed a high fat diet43.Wewere able to identify a local
pQTL for GM4951. While the allele effects of the distant pQTL of
RDH10, HSD17B7, DHRS3, HSD17B13 and AIFM2 were positively cor-
related among themselves (average Pearson R = 0.93) because of cor-
egulation, the average Pearson correlation between those and the local
pQTL of GM4951 was −0.95 (Fig. 7d). This finding points to a conclu-
sion that GM4951 is potentially a key suppressor of lipid accumulation
and has a preferential lipid droplet localization with a high fat
diet (Fig. 7c).

Following the identification of GM4951 as a probable regulator of
the five other protein’s levels, we overexpressed it in mouse hepato-
cyte AML12 cells (AML12GM4951) to validate thefinding and investigate its
biological implications. Knockdown of GM4951 with siRNA was intro-
duced as another perturbation. Each treatment groupwasgenerated in
biological triplicate (AML12WT ± siGM4951, AML12GM4951 ± siGM4951),
and their proteomes were analyzed using TMTpro16 and RTS
technology14. RDH10, HSD17B7, DHRS3, and AIFM2 were quantified in
the experiment. Overexpressing GM4951 led to downregulation of the
four proteins, whereas siGM4951 treatment caused enhanced expres-
sion of the four proteins (Fig. 7e). The observed co-regulation along
with the identification of the distant pQTL confirmed that GM4951 is
responsible for regulating the four protein abundances.

Discussion
Rapidly quantifying (sub)proteomes will be essential to linking geno-
type to phenotype in experimental systems that realistically account
for biological diversity. Though targeted assays have been useful in
this regard, they have been painstaking to develop. Through real-time
analytics, much of the up-front set-up cost has been obviated, facil-
itating rapid development and deployment of these assays. Moreover,
by incorporating elution-order scheduling and maximizing gas-phase
enrichment, these assays have beenmade practical across the breadth
of the detectable proteome. Finally, by incorporating TMT multi-
plexing, we have enhanced throughput, boosted sensitivity (through
pooling of MS1 precursor and MS2 fragment signal), minimized miss-
ing values, and enabledmore complicated experimental designs. All of
this serves to frame a more accurate picture of the proteome and
completely quantify proteome state and relate that state back to
genotypic variation and forward to phenotypic variability.

Here we aim to demonstrate using GoDig to more fully explore
proteotypic variability across large cohort of biological samples. Using

GoDig, peptides from proteins representing entire pathways or gene
categories that have been identified previously can be targeted using
real-time analytics. Only two pieces of information are required: (i) the
predicted elution position and (ii) an already-acquired fragmentation
(MS/MS) spectrum for identification. We found the assay’s absolute
sensitivity to be in the lowattomole range (Fig. 1e) due toultra-long ion
injection times for the MS3 scans (up to 2000 milliseconds). In this
way, a proteome-wide experiment as in Fig. 2 where 10,000 proteins
(from 130,000 peptides) comparing expression across 4 cell lines is
collected first and then used as a library. Next, lists of 50–200 mem-
bers derived from any grouping of those 10,000 proteins can be tar-
geted using multiple peptides per protein, and the generation of
corresponding proteins assays is remarkably simplifiedwith the GoDig
target protein assay builder (Fig. 2b; Supplementary Fig. 9). Across the
pathways and categories examined in this study, we found that more
than 94% of targeted proteins were quantified, and their expression
mirrored what was found with full proteome-wide datasets (Fig. 2d, f,
g). We note the peptide library is expandable and future datasets
collected with samples derived from different specimens will be con-
tinuously merged to the existing library toward global proteome
coverage (Supplementary Fig. 10).

Previously, ordered elution has been proposed as a potential
avenue to avoid retention time scheduling and to boost list size for
targeting5,23,28. By combining this idea with real-time analytics,
GoDig predicts in real time which peptides are most likely to be
eluting at a given elution position and then inserts monitoring PRM
scans via the API for just that subset. In this way, hundreds of pro-
teins from GO categories or entire pathways can be targeted
(Fig. 2c). The largest list of peptides attempted in this work con-
tained 2600 peptides from ~900 relatively abundant proteins
(Supplementary Fig. 3; Supplementary Data 6), and over 98% of
them were quantified in a single GoDig experiment with ~3% CV
across technical replicates (Supplementary Fig. 3b). However, to
allow depth rather than just breadth, 2000ms ion accumulation
times are routinely used when querying proteins with abundance
spanning the dynamic range of the entire proteome. In that regard,
the largest list of proteins attempted at full-proteome depth in this
work contained 254 protein kinases (479 peptides) (Fig. 3a–d).
GoDig quantified 216 from a single injection, and 243 from total 4
consecutive injections. Using 20 random lists of up to 200 proteins
of all abundances also resulted in >93% dataset completion. Since
up to 2000 ms are consumed to quantify each peptide (using an
MS3 scan with an ultra-long injection), the upper limit for the assay
as described or with slight changes would be between 100 and 200
proteins in a single 2-h analysis (Fig. 3e).

Sample multiplexing has many salient advantages including (i)
essentially nomissing values within a single plex—all 16 measurements
are collected simultaneously for each peptide, (ii) accurate quantifi-
cation based on stable isotope dilution theory, (iii) the ability to
accommodate complex experimental designs within one plex includ-
ing replicates, positive and negative controls, dose-response, and time
series data, and (iv) up to 16-fold higher throughput. The founder
dataset is an excellent example of these advantages. Fully utilizing the
16-plex reagents allowed livers from all eight founder strains with one
male andone female to be included in a single plex. In thisway just four
16-plexes contained the entire experiment (64 livers) and all relevant
comparisons could be made within a single plex (Supplemen-
tary Fig. 5).

Our DO mouse study included liver samples from 480 mice that
were randomized into 30 separate 16-plexes (Fig. 4a; Supplementary
Fig. 6). These samples were efficiently analyzed using GoDig with 2-h
analyses targeting four different lists of proteins related to signaling or
lipid biology. In total, each pathway or category list required ~60 h to
measure the expression across the 480 livers. Remarkably, this is
effectively 7.5min per DO liver to measure protein expression across
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the entire pathway. An 18-plex reagent set is now available and would
increase that throughput even more8.

We examined four pathways/categories of proteins in the DO
mouse cohort (Figs. 4–7). We examined expression from proteins
designated as belonging to a category termed “lipidmetabolism.” Fifty
proteins were selected based on the criterion that they had previously
been identified as having a pQTL in the Chick et al. manuscript35. These
pQTL were confirmed but at higher LOD scores using the GoDig assay
(Fig. 4). We examined 50proteins from the “kinase” category where no
pQTL had been previously detected likely due to reduced power in the
statistical test. We identified 13 pQTL from this experiment (Fig. 5).

More than 2200 lipid QTL have been identified using these same
livers previously19. For most lipid QTL the protein driver was not
identified. We applied GoDig in several cases to identify these drivers.
For example, CES2H is an esterase that was identified through our
pQTL mapping and mediation analysis as the potential driver for two
unknown lipids from Linke and coworkers (Fig. 6)19. Based on themass
spectra for the unknown lipids and the known function of the Ces2
gene family, we assigned the lipids as acylcarnitine species with
molecular formulas C14H26NO6 (e.g., pimelylcarnitine) and C13H24NO6

(e.g., methylglutarylcarnitine) with their levels controlled by CES2H
(Fig. 6; Supplementary Fig. 8). Finally, by usingmediation analysis with
the protein expression levels across the mice for the 220 targeted
proteins, we identified that the gene Gm4951 is found within a hotspot
for pQTL from proteins annotated as being localized to lipid droplets
(Fig. 7). Together with the separate experiment in AMl12 cell using
different GM4951 perturbations (Fig. 7), these data point to GM4951 as
a key regulatory protein for lipid droplet homeostasis.

In conclusion, GoDig combines real-time analytics and sample
multiplexing to create a powerful targeted pathway analysis platform.
We have provided here the GoDig technology platform and an
accompanying targeted protein assay builder resource (https://wren.
hms.harvard.edu/godig/) to greatly simplify assay generation.We have
demonstrated its ability to simultaneously target entire pathways and
categories of proteins in a single-shot experiment and to achieve
sensitivities comparable to proteome-wide datasets. Our targeted
investigation of protein categories across 480 DO mouse livers pro-
vided insights into genetic variation and its impact on lipid home-
ostasis. We envision that this technology can bridge the gap across
genotype—proteotype—phenotype, placing proteotypic variation in its
proper context that will empower both basic and applied biological
research in the future.

Methods
Reagents
Reagents for tissue culture, includingDMEM, fetal bovine serum (FBS),
penicillin/streptomycin, and phosphate-buffered saline (PBS) were
obtained from Gibco. Mass spectrometry-grade trypsin and Lys-C
protease were purchased from ThermoFisher Scientific and Wako,
respectively. Isobaric TMT reagents and the BCA protein concentra-
tion assay kit were fromThermoFisher Scientific. Empore-C18material
for in-house StageTips was acquired from 3M and Sep-Pak cartridges
were purchased from Waters. Sera-Mag Speed Beads (cat. nos.
45152105050350 and 65152105050350) were from GE Life Sciences
(Marlborough, MA). All solvents used for liquid chromatography were
purchased from VWR. Unless otherwise noted, all other chemicals
were purchased from ThermoFisher Scientific.

Mouse
All experiments involving mice were preapproved by an AAALAC-
accredited InstitutionalAnimal Care andUseCommitteeof theCollege
of Agricultural Life Sciences (CALS) at the University of
Wisconsin–Madison. The CALS Animal Care and Use Protocol number
associated with the study is A005821, A.D. Attie, Principal Investigator.
All mice were maintained in a temperature and humidity-controlled

room on a 12 h light/dark cycle (lights on at 6:00 and off at 18:00), and
provided water ad libitum.

GoDig algorithm
GoDig was written in C# in the.NET Framework (v4.7.2). It has five
modules, including data acquisition, real-time data visualization, data
analysis, library construction and a Comet database builder. Spectral
and elution libraries, target peptide lists, and the Comet database are
custom-built and loaded to execute the GoDig method. A detailed
workflow is illustrated in Supplementary Fig. 1 and a user guide is
provided as Supplementary Note 1. GoDig utilizes the Fusion instru-
mentAPI (freely available fromThermoFisher Scientific, https://github.
com/thermofisherlsms/iapi). GoDig is freely available via a free user
license for the Orbitrap Eclipse mass spectrometer platform (https://
gygi.hms.harvard.edu/software.html).

GoDig library construction
Data collected for library construction were searched using the open-
source Comet search engine (ver. 2021.01.0)44. Depending on the
sample type involved, UniProt human proteome database (down-
loaded December 21, 2018) or mouse ENSEMBLE proteome database
(ver. 39 release 103) were used with contaminants and decoy
sequences appended. Precursor error tolerance was 50 p.p.m. and
fragment error tolerance was 0.02Da. Static modifications include
carboxyamidomethylation of Cys (+57.0215), as well as TMT11
(+229.1629) or TMTpro16 (+304.2071) on Lys side chains and peptide
N-termini. A maximum of 3 methionine oxidation (+15.9949) events
was allowed as variable modification. Search results were first filtered
to a 1% peptide FDR using linear discriminant analysis employing a
target-decoy strategy and further filtered to obtain a protein level FDR
1%45–47. Search results and raw files were exported and loaded in the
library construction module of GoDig to build elution and spectral
libraries. Only the best peptide spectral match (PSM) for each unique
peptide (charge state considered) was included in the spectral library.
Peptide PSM identification time was recorded in the elution library
without additional retention time alignment between fractions. The
elution librarywas later used to generate peptide elution bins based on
user-specified bin width when setting up the targeted experiment.

Real-time targeted proteomics assays using GoDig
GoDig was run on the data collection computer connected to the
instrument. Experiments involving ADH1 peptides used 60-min (75-
min method length) and 90-min (105-min method length) gradients,
while experiments using the 4 human cell lines and DO mouse livers
used a 105-min gradient (120-min method). Note that the instrument
method only included Orbitrap MS1 scans (resolution of 120 K; mass
range 400–1500m/z; AGC target 2e5; max injection time of 50ms; a
single FAIMS CV of −60 V). All other scan types with CV values at −40,
−60, and −80, including prescans, ion trap MS2, Orbitrap MS2, and
Orbitrap MS3 scans were prompted for insertion via the API using the
GoDig software. Peptide targets, elution and spectral libraries were
loaded into GoDig.

GoDig listens to each collectedMS1 spectrum in real timewith the
possibility of inserting five different scan types for different uses:
(1) GoDig injects CV-specific prescans for each FAIMS CV value

needed in addition to the one being collected by the instrument
method. These are used to set the AGC.

(2) Every 15 s, GoDig selects and fragments the top6precursors in the
most immediate MS1 scan to collect fast ion trap MS2 scans. The
resulting scans are searched and mapped to the elution library.
Their elution bins are retrieved and used to calibrate the current
elution point.

(3) In parallel, GoDig sends ion trap PRM scans for targets within the
calibrated elution window (±3 bin). Depending on the run length,
bins represent between 15 and 30 s of elution time. The returned
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PRMs arematched in real time to theoretical fragments of specific
targets (detection).

(4) Upon matching a certain number of fragments in the ion trap
PRM, GoDig prompts the collection of Orbitrap MS2 scans with a
maximum injection time of 900ms to accommodate weak sig-
nals. Fragment ions are matched and cosine-correlated to the
library spectrum for the target peptide (identification).

(5) When cosine similarity is >0.9 and more than 60% of the frag-
ments with a relative abundance >50% in the library spectrum are
present in the experimental spectrum,GoDig selects SPS-ions that
pass a fixed purity threshold and inserts a custom SPS-MS3 scan
(quantification). Maximum injection time is set to 2000ms in
order to accommodate even very weak signals.

The TMT reporter ion signals measured in each GoDig assay were
extracted using the GoDig UI and exported to spreadsheets for
downstream analysis in R (ver. 4.0.5) in RStudio48,49. Data formatting
was performed using R/tidyverse and visualization was created using
R/ggplot250,51. Quantified peptides were filtered to require summed
SN> 100 or >160 for TMT11- or TMTpro16-labeled samples, respec-
tively. Likewise, SPS ion isolationpuritywas required tobe>0.7 (70%of
signals originated from the desired SPS ion in the window). MS3
quantification scans for the same peptide were summed. When more
than three MS3 events were triggered for the same peptide, only the
top three quantification events based on numbers of fragment ions
matched were kept. Column normalization was performed to correct
for different protein loading in each channel. For the experiments
involving ADH1 peptides, known interference was measured in the
blank channels without labeled ADH1 peptides and subtracted from
the ADH1 measurements as baseline interference.

DO animals and genotyping
DO mouse livers (n = 480) were obtained from the same mice used in
previous studies19,36,52. Briefly, the DOmicewere obtained at 4weeks of
age and maintained within the Department of Biochemistry animal
vivarium at the University of Wisconsin. All DO mice were maintained
on a HF/HS (high fat/ high sucrose) diet (44.6% kcal fat, 34% carbo-
hydrate, and 17.3% protein) from Envigo Teklad (catalog number
TD.08811). At ∼22 weeks of age, DO mice were euthanized with CO2,
and their liverswereharvested andflash frozen in LN2.Genotypingwas
performed on tail biopsies using the Mouse Universal Genotyping
Array (GigaMUGA) [143,259 markers53] at Neogen (Lincoln, NE). Gen-
otypes were converted to founder strain–haplotype reconstructions
using R/DOQTL software54. We interpolated the GigaMUGA markers
onto an evenly spaced grid with 0.02-cM spacing and added markers
to fill in regions with sparse physical representation, resulting in
69,005 pseudomarkers. Further details regarding animalmanipulation
and genotyping can be found in the study by Keller et al.36.

Founder strain animals
Livers from the 63 mice encompassing all 8 founder strains (A/J,
C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/H1LtJ, PWK/PhJ, WSB/EiJ, 129S1/
SvlmJ) were harvested from four females and four males of each strain
(n = 8 mice per strain) fed the same diet as the DO mice above. Note
there were only three mice of the CAST/EiJ male due to breeding dif-
ficulties. A mixture of the three male mouse livers was used to com-
plete the 16-plex for this strain. In total, 64 samples were prepared,
grouped, and labeled into four 16-plexes.

GM4951 expression
Gateway-compatible pDONR murine Gm4951 (NM_001033767.3) was
createdby customgene synthesis (GeneArt Express gene synthesis and
cloning service, Invitrogen) and sequence verified via Sanger sequen-
cing. The Gm4951 open reading frame was transferred to a gateway
lentiviral destination vector with c-terminal FLAG-HA tag using LR

clonase II according to themanufacturer’s instructions (ThermoFisher
Scientific), and lentiviral particles were prepared by transfecting HEK-
293Tcellswith 2 µgof transfer vector and0.5 µgof eachhelper plasmid
encoding Gag-Pol, Rev, Tat, and VSV-G using polyethyleneimine (PEI).
Cells were seeded into 60mm plates one day prior to transfection.
48 h post transfection, viral supernatant was harvested, filtered, and
frozen at −80 oC. Thawed viral particles were used to infect mouse
AML12 cells (ATCC). Forty-eight hours post-transduction, cells were
selected with 1ug/mL puromycin (Sigma) to create stable
expression lines.

Preparation of cell line samples (related to Figs. 1, 2, 3)
Human RPE1 (#CRL-4000), U2OS (#HTB-96), HCT116 (#CCL-247), and
HEK293T (#CRL-3216) cells were purchased from the American Type
Culture Collection and grown in DMEM supplemented with 10% fetal
bovine serumand 1%penicillin/streptomycin until 80% confluent. Cells
were washed twice with ice cold PBS, pelleted and stored at −80 oC
until use. Cell pellets were processed as described previously30. In
brief, cells were lysed by resuspension in lysis buffer followed by 10
passes through a 21-gauge syringe. Lysates were reduced with 5mM
tris(2-carboxyethyl)phosphine (15min, room temperature [r.t.]) and
alkylated with 10mM iodoacetamide (30min, r.t. in the dark). Excess
iodoacetamide was quenched with 10mM dithiothreitol (15min, r.t.).
Proteins were isolated by chloroform methanol precipitation, subse-
quently resuspended in 200mM EPPS pH 8.5 (~1mg/ml) and digested
first with LysC for 12 h at r.t. shaking on a vortexer followed by a 6-h
digestion at 37 oC with trypsin. Protein digests were aliquoted to
desired concentrations and labeled directly with separate TMT chan-
nels. The labeled peptides were then mixed and desalted on SepPak
prior to basic pH fractionation or LC-MS analysis.

Preparation of mouse tissue samples (related to Figs. 4–7)
10 μL of the homogenized tissue was mixed with 140μL lysis buffer
(8MUrea, 100mMEPPS, pH 8.5 with protease inhibitor) and lysed by
12 passes through a 21-gauge (1.25 inches long) needle. Protein con-
centrations were determined using the bicinchoninic acid (BCA)
assay (ThermoFisher Scientific). Lysates were reduced with 5mM
tris(2-carboxyethyl)phosphine (15min, r.t.) and alkylatedwith 10mM
iodoacetamide (30min, r.t. in the dark). Excess iodoacetamide was
quenched with 10mM dithiothreitol (15min, r.t. in the dark). Single-
Pot, Solid-Phase-enhanced Sample processing (SP3) was used during
protein isolation and digestion as described previously55. In brief,
reactions were performed in 8-Strip PCR tubes using an 8-channel
pipette. 10 µL (0.5mg) of each Sera-Mag Speed Beads were added to
100 µg of protein in 100 µL total volume, as prepared above. Neat
ethanol was added to a final concentration of 50%. The beads were
carefully triturated 10 times. The samples were held to the magnet
for 2min and the supernatant was aspirated. The beads (with bound
protein) were washed 3 times with 80% ethanol in the same manner.
For protein digestion, we added 100 µL of 200mM EPPS pH 8.5 and
Lys-C overnight at room temperature, followed by trypsin for 6 h at
37 °C on an orbital shaker (Jitterbug HeatedMicroplate Shaker). Both
enzymes were added a 1:100 protease-to-peptide ratio in the pre-
sence of beads. Protein digests were aliquoted to desired con-
centrations and labeled directly with separate TMTpro channels as
described in Supplementary Data 2 for founder strains, and Supple-
mentary Data 3 for DO mice.

siRNA transfection in mouse AML12 hepatocyte
siRNAs targeting on GM4951 was purchased from Dharmacon (J-
055897-11-0005). ON-TARGET plus Non-targeting Pool (Dharmacon)
were used as control. AML12 cells were transfected in six-well dishes
with 30 nM siRNA (final concentration) using Lipofectamine RNAiMAX
Transfection Reagent (Thermo Fisher) according to the instructions of
manufacturer. Cells were harvested after 60 h for proteome analysis
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experiment. Oleic acid was added to a final concentration of 200 µM,
32 h prior to the harvest.

Basic pH reversed-phase fractionation
If fractionation was required, TMT-labeled mixtures (~200 µg) as 16-
plexes were loaded onto an Agilent 300 Extend C18 column (3.5μm
particles, 2.1mm ID and 250mm in length). Peptides were separated
using a 50min linear gradient from 13 to 43% buffer B (90% acetoni-
trile, 10mM ammonium bicarbonate, pH 8) at a flow rate of 0.25ml/
min. Fractions were collected into a 96-well plate and then were con-
solidated into 24 fractions. Samplesweredried in a SpeedVac and each
fraction was then desalted via StageTip30. The resulting desalted pep-
tides were dried in a SpeedVacand and then resuspended in a solution
containing 5% acetonitrile and 5% formic acid prior to LC-MS analysis.

Analysis by liquid chromatograph coupled to mass spectro-
metry (LC-MS)
Unless otherwise noted, all mass spectrometry data were acquired
using an Orbitrap Eclipse mass spectrometer in-line with a Proxeon
NanoLC-1200 UPLC system and a FAIMS Pro device.

LC-MS analysis for global protein expression profiling in mouse
founder strains
Twenty-four basic pH HPLC fractions (see “Basic pH reversed-phase
fractionation”) were collected for each of the four 16-plexes. Analysis
of each fraction was performed with the real-time search (RTS)
pipeline14. Samples were loaded on an in-house 100-µm capillary col-
umn packed with 30 cm of Accucore 150 resin (2.6μm, 150 Å; Thermo
Fisher Scientific). Twelve out of the 24 basic pH fractions per
TMTpro16 set were separated using a 120-min method, while the
remaining 12 were separated using a 90-min method. Data were col-
lected using an RTS-powered SPS-MS3 method with the mass spec-
trometer alternating between three compensatory FAIMS voltages
(−80, −60 and −40V). MS1 scans were collected in the Orbitrap with a
resolution setting of 120K, a 50%AGC target and amaximum injection
time of 50ms. MS2 scans were acquired in Top Speed mode with a
cycle time of 1.2 s. MS2 AGCwas set at 100%, and amaximum injection
time of 35ms was allowed. Dynamic exclusion was enabled with an
exclusion duration of 120 s and a mass tolerance of ±7 p.p.m. and only
one charge state was allowed to trigger MS2 scans per precursor.
ResultingMS2 scanswere searched in real timeusing theComet search
engine (https://uwpr.github.io/Comet/)14,44 and the returned peptides
were filtered using simple initial filters that included: not matching a
reversed-sequence, maximum PPM error <10, minimum cross-
correlation of 0.5, minimum deltaCorr of 0.10 and minimum peptide
length of 7. If peptide spectra matched those criteria above, an
SPS–MS3 scan was inserted using up to 10 b- and y-type fragment ions
as precursors with an AGC of 200K for a maximum of 250ms, with a
normalized collision energy setting of 55.

LC-MS analysis to construct libraries for TMT11-labeled ADH1
experiments
Libraries for benchmarking experiments using TMT11-labeled ADH1
peptides in the HCT background were built using a 90-min gradient
(105min method length). Data were collected using a high-resolution
MS2 method with the mass spectrometer alternating between three
compensatory FAIMS voltages (−80, −60 and −40V). MS1 scans were
collected in the Orbitrap with a resolution setting of 120 K, a 50% AGC
target and a maximum injection time of 50ms. MS2 scans were
acquired in the Orbitrap (15 K resolution) in Top Speed mode with a
cycle time of 1 s, a collision energy of 35, and an isolation width of 0.5.
MS2 AGC was set at 100%, and a maximum injection time of 100ms
was allowed. Dynamic exclusion was enabled with an exclusion dura-
tion of 90 s and a mass tolerance of ±7 p.p.m.

LC-MS analysis to construct libraries for GoDig analysis of 4
TMTpro16-labeled human cell lines
24 basic pH HPLC fractions (see “Basic pH reversed-phase fractiona-
tion”) were loaded and separated on an in-house 100-µm capillary
column packed with 30 cm of Accucore 150 resin (2.6μm, 150Å;
Thermo Fisher Scientific). LC separation used a 105-min gradient
(120min method length). Data were collected using a high-resolution
MS2 method with the mass spectrometer alternating between three
compensatory FAIMS voltages (−80, −60, and −40V). MS1 scans were
collected in the Orbitrap with a resolution setting of 120 K, a 50% AGC
target, and a maximum injection time of 50ms. MS2 scans were
acquired in theOrbitrap (15 K resolution) Top Speedmodewith a cycle
time of 1 s, a collision energy of 34, and an isolation width of 0.5. MS2
AGC was set at 100%, and a maximum injection time of 150ms was
allowed. Dynamic exclusion was enabled with an exclusion duration of
120 s and a mass tolerance of ±7 p.p.m., and only one charge state was
allowed to trigger MS2 scans per precursor.

LC-MS analysis to construct libraries for TMTpro16-labeled DO
mouse samples
24 basic pHHPLC fractions were obtained by pooling a quarter of each
of the corresponding fractions collected for the four founder-strain 16-
plexes. Samples were loaded and separated on an in-house 100-µm
capillary column packed with 30 cm of Accucore 150 resin (2.6μm,
150 Å; ThermoFisher Scientific). LC separation used a 105-min gradient
(120min method length). Data were collected using a high-resolution
MS2 method with the mass spectrometer alternating between three
compensatory FAIMS voltages (−80, −60 and −40V). MS1 scans were
collected in the Orbitrap with a resolution setting of 120 K, a 50% AGC
target and a maximum injection time of 50ms. MS2 scans were
acquired in the Orbitrap (15 K resolution) in Top Speed mode with a
cycle time of 1 s, a collision energy of 34, and an isolation width of 0.5.
MS2AGCwas set at 100%, and amaximum injection timeof 150mswas
allowed. Dynamic exclusion was enabled with an exclusion duration of
120 s and a mass tolerance of ±7 p.p.m., and only one charge state was
allowed to trigger MS2 scans per precursor.

Data analysis for global protein expression profiling in mouse
founder strains
Data were searched using the open-source Comet search engine
(ver. 2019.01.5)44 with the mouse Ensembl proteome database (ver.
39 release 103) with contaminants and reverse decoy sequences
appended. Precursor error tolerance was 50 p.p.m. and fragment
error tolerance was 0.9 Da. Static modifications include Cys car-
boxyamidomethylation (+57.0215) and TMTpro16 (+304.2071) on
Lys side chains and peptide N-termini. A maximum of 3 methionine
oxidation (+15.9949) events was allowed as variable modification.
Search results were first filtered to a 1% peptide FDR using linear
discriminant analysis employing a target-decoy strategy and further
filtered to obtain a protein level FDR 1%45–47. TMT reporter ion signal
was extracted by allowing a 0.003 Da mass tolerance and signal-to-
noise (SN) ratios were calculated for each channel. A limit of
quantification filter was implemented by requiring a minimum
summed SN > 100 for TMT11-labeled samples and >160 for
TMTpro16-labeled samples. Column normalization was performed
to correct for different protein loading in each channel. Results
were further analyzed in R (ver. 4.0.5) in RStudio48,49. Data format-
ting was performed using R/tidyverse and visualization was created
using R/ggplot250,51 and RColorBrewer. Protein abundance was
modeled with linear regression with strain and sex as covariates.
Only proteins quantified in at least three biological replicates were
included. Benjamini-Hochberg adjusted p values were obtained and
proteins with an adjusted p < 0.05 were considered to be differen-
tially regulated.
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Protein QTL mapping
Protein abundance values were first normalized as ratios to the
group (plex) mean and then log2 transformed. QTL were mapped
using the scan1 function in qtl2 R package56, which fits a linear
mixed effect model for each protein as an outcome variable at
putative QTL individually across the genome. Sex and batch
(breeding generation of the mice) were included as additive cov-
ariates and a random polygenic term to account for genetic relat-
edness was included in themapping35. The QTL term that is tested is
modeled in terms of scaled probabilistic counts (i.e., dosages) of
the 8 founder haplotypes at the genomic position. The founder
allele effects at each QTL were generated using the scan1coef
function, which extracts the 8 founder haplotype regression
coefficients.

Statistical analysis of pQTL candidates
Significance thresholds for QTL mapping were established by per-
forming 10,000 permutations using the function scan1perm in the qtl2
R package56. Permutation-derived empirical p-values were calculated
as the proportion of permutation LOD scores that were greater than
the detectedQTL LOD score, and then converted to q-valueswith the q
value R package57. The significance threshold for declaring a QTL was
set at q value < 0.1.

Mediation analysis
Mediation was performed using the intermediate R package35.
Individual candidate mediator proteins were included as an addi-
tive covariate in the QTL mapping model (with polygenic term
excluded) fit at the peak locus and the regression was performed
again. The assumption was that by including the covariate, true
mediators should cause a substantial decrease in the QTL LOD
score. The proportion reduction in QTL LOD score is recorded as a
summary. When many candidate mediators were evaluated for the
same pQTL, Z-scores were calculated across the LOD score reduc-
tions to capture information on the distribution of mediation
scores.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This project has generated many types of data and code that are
available for distribution via numerous venues. Items not listed here
will be provided by the Lead Contact upon reasonable request. The
mass spectrometry data profiling liver proteomes from 8 mouse
founder strains have been deposited at the ProteomeXchange
Consortium with the dataset identifier PXD029461. Global pro-
teome data in founder mouse strains generated during this study
are also available using the viewer on the Gygi lab website (https://
gygi.hms.harvard.edu/resources.html). The mass spectrometry
data profiling 4 human cell lines have been deposited at the Pro-
teomeXchange Consortium with the dataset identifier PXD033643.
Themass spectrometry data profiling AML12WT and AML12GM4951 with
and without siGM4951 have been deposited at the Proteo-
meXchange Consortiumwith the dataset identifier PXD033679. The
297 raw files from GoDig experiments have been deposited at the
MassIVE repository (https://massive.ucsd.edu/ProteoSAFe/static/
massive.jsp) with the dataset identifier MSV000090110 [https://
doi.org/10.25345/C57H1DR40]. The liver lipidomics dataset used
here was published by Linke et al. 19 and has been deposited
in Chorus (https://chorusproject.org/anonymous/download/
experiment/a639bcc5602c441c9a1df94f4340d626). In addition,
source data for individual plots can be found in Source Data. Source
data are provided with this paper.

Code availability
GoDig relies on real-time access to spectral data which is provided
under the free license provided by the Thermo Scientific Fusion API
(https://github.com/thermofisherlsms/iapi). GoDig uses the API to
control Orbitrap Fusion-based instruments. To enable GoDig, the RTS
Comet functionality (ver. 2021.01.0) is required and has already been
released (https://uwpr.github.io/Comet/). The GoDig software is freely
available via a Recipient Agreement for the Orbitrap Eclipse or the
OrbitrapAscendmass spectrometer platformswith an API license. The
Recipient Agreement and the instruction to obtain the API license can
both be obtained at https://gygi.hms.harvard.edu/software.html.
GoDig is enabled through theAPI framework such that the source code
is not available. Targeted assays can be built using the GoDig targeted
protein assay builder (https://wren.hms.harvard.edu/godig/).
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