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A B S T R A C T   

Sepsis is a major global health concern causing high morbidity and mortality rates. Our study utilized a Meningo-
coccal Septic Shock (MSS) temporal dataset to investigate the correlation between gene expression (GE) changes and 
clinical features. The research used Weighted Gene Co-expression Network Analysis (WGCNA) to establish links 
between gene expression and clinical parameters in infants admitted to the Pediatric Critical Care Unit with MSS. 
Additionally, various machine learning (ML) algorithms, including Support Vector Machine (SVM), Naive Bayes, K- 
Nearest Neighbors (KNN), Decision Tree, Random Forest, and Artificial Neural Network (ANN) were implemented to 
predict sepsis survival. The findings revealed a transition in gene function pathways from nuclear to cytoplasmic to 
extracellular, corresponding with Pediatric Logistic Organ Dysfunction score (PELOD) readings at 0, 24, and 48 h. 
ANN was the most accurate of the six ML models applied for survival prediction. This study successfully correlated 
PELOD with transcriptomic data, mapping enriched GE modules in acute sepsis. By integrating network analysis 
methods to identify key gene modules and using machine learning for sepsis prognosis, this study offers valuable 
insights for precision-based treatment strategies in future research. The observed temporal-spatial pattern of cellular 
recovery in sepsis could prove useful in guiding clinical management and therapeutic interventions.  
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1. Introduction 

Sepsis is a significant global health challenge affecting individuals 
across socioeconomic backgrounds and countries, including low, mid-
dle, and high-income nations [1]. Based on data extrapolated from the 
United States of America, it is estimated that sepsis accounts for 15–19 
million cases worldwide each year. Given the polymicrobial and het-
erogeneous nature of sepsis, studying specific clinical pathogenic states 
in particular age groups can provide valuable experimental benefits. 
One such condition is Meningococcal Septic Shock (MSS). MSS, when 
occurring without meningitis, is associated with a higher case fatality 
rate (CFR), ranging from 16% to 52% [2]. The rapid progression of the 
disease and the significant CFR of invasive meningococcal disease 
leading to MSS remains a concern, particularly among infants. Addi-
tionally, the burden of meningococcal disease is highest among young 
infants, with serogroup B being the most prevalent [3]. Infants may 
exhibit a genetic predisposition to MSS, with toll-like receptor-4 muta-
tions being associated with invasive meningococcal disease in infants 
under 12 months of age [4]. In MSS, the primary focus of treating 
physicians is to provide critical care support that can impact the pro-
gression of the disease, particularly within the first 48 h. The exploration 
of clinical relationships through temporal microarray analysis can pro-
vide valuable insights into disease mechanisms relevant not only to MSS 
pathogenesis but also to sepsis as a whole. 

Gene expression analysis has proven valuable in sepsis research, 
providing insights that can contribute to patient outcome prediction. 
Longitudinal studies have investigated the transcriptome in both chil-
dren and adults, highlighting the significance of gene-expression data in 
sepsis prognostication [5–7]. In a study by Wong et al., microarray 
analysis was conducted on a pediatric sepsis cohort, employing Endo-
typing to classify patients into three subclasses (Endotype A, B, and C), 
based on underlying pathobiological mechanisms [8]. The researchers 
identified 100 genes that effectively differentiated between Endotypes A 
and B in children with septic shock [9]. They further concluded that 
allocation to subclass A was associated with a poorer outcome. Notably, 
the study also observed the concept of endotype-switching, where pa-
tients transitioned from one subgroup to another during the course of 
sepsis. These findings underscore the potential value of utilizing gene 
expression studies to develop precision medicine strategies for future 
sepsis management. 

Time-series datasets can provide an important perspective with 
respect to sepsis evolution. By treating time-series gene expression data 
as interconnected geometric clustering networks, one can exploit the 
inherent interdependency of intra-patient data. Amongst various 
network analysis approaches, Weighted Gene Co-expression Network 
Analysis (WGCNA) stands out, as it clusters based on biological signifi-
cance, not geometric distance, grouping genes into functional modules 
[10]. WGCNA also enables module stratification based on clinical pa-
rameters, aiding in gene-trait relationship studies [11]. Applications of 
this modular approach have demonstrated relationships between hub 
genes and long non-coding RNAs (lncRNAs) in sepsis models [12,13], 
identified key genes associated with sepsis prognosis [14], and devel-
oped gene panels for sepsis diagnosis [15]. By employing a secondary 
analysis of pediatric sepsis datasets, key hub genes were identified and 
validated through qPCR, indicating potential biomarkers for pediatric 
sepsis [5,16]. In a novel approach, WGCNA was followed by differential 
correlation analysis to uncover genes with opposing correlations in 
different conditions [17]. This exemplifies the evolving application of 
WGCNA in sepsis research. 

An understanding of how sepsis evolves from a cellular perspective 
remains deficient. This is reflected by the lack of temporal gene 
expression studies in the clinical literature, especially in children. 
Therefore, we propose a topological modular approach using Weighted 
Gene Co-expression Network Analysis (WGCNA) to analyze a dataset of 
pediatric patients with meningococcal septic shock (MSS). We believe 
the study dataset employed for secondary analysis was the first multi- 

sampling published gene expression series in infants with septic shock 
[18]. As researchers with access to the original clinical data, we have a 
unique opportunity to correlate clinical phenotype and gene expression 
to infants with MSS. This dataset provides a chance to undertake a 
temporal analysis of dynamic clinical changes in association with 
changes in enriched gene function. Insights based on time-associated 
studies could galvanize the field of sepsis research through improved 
clinical application. Another challenge is that Sepsis is not a simple 
discrete event, but rather a complex non-linear multi-variable phe-
nomenon, known for its heterogeneity and complexity in the transition 
from infection to clinical sepsis. This complexity, encompassing clinical, 
immunological, and pathophysiological dimensions, contributes to 
experimental variation making statistical analysis challenging. In light 
of these limitations, Machine Learning (ML) has been used to model 
crucial sepsis end-points, facilitating unsupervised classification and 
supervised labeling of datasets in sepsis [19–22]. Therefore, in this 
research study, as well as WGCNA, ML algorithms are employed to 
enhance prognostication. 

2. Methods 

The methodology employed in this study comprises two main com-
ponents: network analysis using Weighted Gene Co-expression Network 
Analysis (WGCNA), as depicted in Fig. 1, and Machine Learning (ML) 
techniques. 

2.1. Patient recruitment 

Study details were previously published [18] with approval from the 
Nottingham University ethics committee (REC reference 05/Q2403/53). 
Patients presenting to Nottingham University Hospital Pediatric Critical 
Care (PCC) were recruited after obtaining written informed consent 
[Table 1]. Patients received standard clinical treatment, including 
appropriate antimicrobial therapy for presumed meningococcal sepsis. 
The children studied had no pre-existing medical conditions. Blood 
samples were collected on admission to PCC (designated 0 h) and at 4, 8, 
12, 24, and 48 h following PCC admission. 

2.2. RNA extraction 

The dataset from this secondary analysis was available from the 
ArrayExpress dataset (E-MEXP-3850). 

2.3. Microarray data analysis and weighted gene Co-expression network 
analysis (WGCNA) 

The expression data set contains 30 samples from five patients at six 
different time points. Patient 4 at the 24-h time point had no expression 
values and was removed from further analysis, reducing the total sam-
ples to 29.33,297 probe sets from 29 Human Gene 1.0 ST Arrays were 
generated and compared. Using R software, the 29 Microarray gene 
expression sample dataset underwent WGCNA. First, a gene co- 
expression network was constructed after calculating the Pearson cor-
relations between pairs of genes across all samples. Next, modules were 
identified using a hierarchical clustering dendrogram and dynamic tree- 
cut methodology. Densely interconnected gene clusters were repre-
sented by modules, according to a soft thresholding power β. A soft- 
thresholding power of 6 was chosen. It is the lowest power for which 
the scale-free topology fit index curve flattens (0.68). A clustering 
dendrogram was generated, assigning colors to the modules. This led to 
the identification of 19 modules labeled 0–18, with the number of genes 
associated with each gene cluster. The label 0 was reserved for genes 
outside of all modules. 
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Fig. 1. A. Preprocessed data log2 normalized downloaded B. Pairwise correlation of genes undertaken for each gene-pair combination. C. Choosing a topological soft 
threshold value for the power of Beta allows the construction of a module-centric network. D. An adjacency network is constructed. The nodes in the network 
correspond to genes, and the connections are known as edges determined by the pairwise calculations in A. The edges are calculated between 0 and 1. E. Using a 
hierarchal clustering, similar genes are grouped in a tree structure with ‘branches’ denoted as gene modules. A module consists of a collection of highly inter-
connected genes with high absolute correlation. F. A module-trait matrix is then generated associating traits (horizontal axis) to Module Eigenes (Vertical Axis). 
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2.4. Module detection 

Clustering was also performed based on the module color and clinical 
traits of time, age, gender, mortality, and weight. Subsequently, mod-
ules were related to phenotypic data based on clinical variables. Each 
given module generated a first principal component, the Module 
Eigengene (ME). Clinical trait data were then correlated against the ME, 
giving a correlation coefficient. Genes from the significant modules 
showing high Module Membership (MM) were filtered and selected (p. 
MM ≤ 0.05). 

2.5. WGCNA construction and detection of disease-associated modules 

A quantitative measure of MM was defined for each module as the 
correlation of the ME with the gene expression profile. Modules were 
related to phenotypic characteristics, such as weight, age, mortality, and 
organ dysfunction (based on the Pediatric Logistic Organ Dysfunction 
score [PELOD]). An adjacency matrix was assembled, with rows corre-
sponding to MEs and columns to clinical traits (Fig. 2). Genes from the 
significant modules showing high module membership were filtered and 
selected (the probability of module membership was ≤0.05). Eigengenes 
were formulated for each module (Module Eigenes) and correlated to 
phenotypic characteristics (external trait) data. Each association was 
color-coded by the correlation value. 

2.6. Gene enrichment 

WGCNA analysis generated gene lists showing significant module 
membership. These gene lists then underwent pathway enrichment 
studies. The Fisher exact test was then applied to the gene list. Using in- 
house R script, pathways were generated using Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database annotation with the associated 
Gene Ontology (GO) terms. The subsequent enriched gene list was then 
imported into Cytoscape [23] and annotated using the enrichment map 
tool within the Cytoscape platform (Fig. 3). The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database provided an interpretation of the 
enriched gene pathways. This enriched data was then passed into the 
enrichment map software in Cytoscape using a p-value (0.001) and an 
FDR (0.01) threshold to illustrate the enriched pathways. Further, the 
enriched gene list, using R script, filtered using a p-value (0.001) and an 
FDR (0.01) threshold, generated enrichment dot plots (Fig. 2). Dot plots 
for PELOD 0, 24, and 48-time categories were generated using the top 25 
significant (p < 0.01) pathways for ease of illustration (Fig. 4). Dot plots 
for PELOD 0, 24, and 48-time categories were generated using the top 25 
significant (p-value <0.01) pathways for ease of illustration (Fig. 4). The 

pathways gendered according to the dot plots pertained to GO terms and 
terms from the Reactome database. The WGCNA-generated gene lists 
were also enriched by parsing through a gene profiling platform, g: 
Profiler. The significantly upregulated genes (p < 0.05) according to the 
adjacency matrix trait underwent functional enrichment analysis using 
g: Profiler. A p < 0.05 for statistical significance and the 
Benjamini-Hochberg FDR (False Discovery Rate) were used to reduce 
the chance of false positives. As detailed (Fig. 5), g: Profiler uses a 
number of client libraries to interpret gene lists from a functional 
enrichment point of view. 

2.7. Machine learning data processing and methods 

The dataset contained 29 instances of survival class (23) and non- 
survival class (6), which was an unequal distribution of classes. In ma-
chine learning, unequal data distribution is one of the major causes of 
decreasing accuracy of classification models. Due to the imbalance in-
stances in the dataset, machine learning models could not effectively 
learn the patterns for survival and non-survival classes. As the non- 
survival class was less in number, the results generated by this class 
would become ineffective. To overcome this challenge, a synthetic mi-
nority oversampling technique (SMOTE) was applied to handle the 
imbalanced data [24]. This popular approach is often used in classifi-
cation problems of imbalanced datasets. SMOTE is considered one of the 
most powerful, reliable, and adaptable pre-processing techniques in 
machine learning [25]. After balancing the dataset, it is important to 
identify patterns in the data series and express them so that the simi-
larities and differences can be observed and reduce the dimensionality 
without losing too much information. Principal component analysis 
(PCA) is a multivariate technique to reduce the complexity of the input 
variables. This analyses extremely interrelated components in the 
dataset and decreases the complexity and dimension. Thus extracting 
the most significant information in the dataset. Therefore, PCA was 
applied to strip out the low-influence features from the dataset. After the 
preprocessing of data, six popular machine learning techniques, Support 
Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor (KNN), 
Random Forest, Naïve Bayes, and Artificial Neural Network (ANN), were 
applied to understand the impact of each technique on the classification 
of the given survival and non-survival datasets. SVM is a supervised 
machine learning algorithm that identifies different classes by sepa-
rating the classes with the help of a decision boundary known as a hy-
perplane (a line that distinguishes two classes). DT is a classifier that 
uses a tree-like structure based on knowledge gained on classification. 
KNN is a classifier technique where the training is predicated on “how 
similar” one dataset is from another based on the distances between a 

Table 1 
Five children were recruited into the Meningococcal septic shock study. Patient one was non-surviving. Also, patient 1 was culture negative with the diagnosis of MSS 
on clinical grounds. All children developed DIC and required mechanical ventilation. GpB = Group B Neiserria Meningococcus.   

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

Number of samples 5 5 5 5 5 
Age (months) 13 10 22 24 9 
Sex Female Female Female Male Male 
Weight (Kg) 12 12.9 12 15 8 
Duration of PICU admission (DAYS) 9 4 3 6 3 
No. of organ(s) in failure 4 4 3 6 3 
PELOD score on admission 61 31 31 12 11 
PELOD Score at 24 h 52 2 22 22 2 
PELOD Score at 48 h 43 2 31 12 1 
Median PRISM Score at 12 h 12 11 17 14 9 
Median PRISM Score at 24 h 15 7 15 13 4 
Serotype Negative culturea GpB meningococcus GpB meningococcus GpB meningococcus GpB meningococcus 
GCS at 24 h 3 7 3 3 10 
Mean Inotrope score on Day 1 38 13 112 27 9 
Mortality (at 28 days) Died Alive Alive Alive Alive 
DIC Yes Yes Yes Yes Yes 
Duration of mechanical ventilation (days) 5 4 4 4 4′  
a Presumed meningococcal sepsis based on clinical grounds. 
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point and all the examples within the data, selecting the required 
number of examples (K) closest to the point, incorporating votes for the 
frequent leading label. The random forest creates many trees that ach-
ieve their output through ensemble learning methods for classification. 
Naïve Bayes is a classification technique that uses a simple probability 
that applies Bayes Theorem with high independent assumptions. Bayes 
theorem is used in statistics to calculate the probability of a class of each 
attribute group present to determine which class is optimal. ANN is 

another classification technique that mimics the functioning of a human 
brain with the basic principle that a number of parameters as inputs are 
processed in such a way as in the hidden layer (multiplication, addition, 
division, etc.), then processed again in the output layer to produce an 
output. For these machine learning techniques, the pre-processed data 
were partitioned into training and testing with a ratio of 70%:30%. The 
training dataset is fitted to the machine learning classifier, and later 
predictions were obtained using the testing dataset. These six 

Fig. 2. Module-trait associations heat map representation of adjacencies in the eigengene network (2A and 2B). The table is color-coded by correlation according to 
the color legend. White color represents low adjacency (low correlation), red high adjacency (positive correlation) and green represents high adjacency (negative 
correlation). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Gene-set enrichment results are graphically mapped to the Enrichment Map. The enrichment score (the enrichment p-value) is mapped to the node color as a 
color gradient, with node size proportional to the odds ratio. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

A. Rashid et al.                                                                                                                                                                                                                                  



Informatics in Medicine Unlocked 41 (2023) 101293

6

machine-learning techniques were applied, and the results were 
obtained. 

3. Results 

3.1. Patient demographics 

All Infants demonstrated clinical phenotype consistent with severe 
shock and diffuse intravascular coagulation consistent with Meningo-
coccal sepsis (Table 1). Patient 1 died and is noted as having received a 
Protein C infusion during treatment. 

3.2. Module trait associations 

An adjacency network matrix was formulated from the WGCNA of 

the gene expression data. The correlation between eigengenes and traits 
is depicted as a heat map (Fig. 2). Each row corresponds to a module 
eigengene, the column to a trait. Each cell contains the corresponding 
correlation and p-value (in parenthesis). Each row and column in the 
heatmap corresponds to one module eigengene (labeled by color) or 
weight. The highest correlation for PELOD at 0 h was with the MEm-
agenta module (0.83) with a highly significant p-value of 2e-08. At 
PELOD 24 h, MEpurple modules were the most significant, with a cor-
relation of 0.74 and a p-value of (4e-05). With PELOD 48 h, MEpurple 
modules were the most significant, with a correlation of 0.95 and a p- 
value of (7e-17). 

3.3. Pathway enrichment studies, enrichment map generation 

At PELOD time 0, pathways related to cell nuclear function were seen 

Fig. 4. Box plot enrichment box plot of significant genes from the WGCNA clusters for PELOD 0 h A. PELOD 24hrs. HALLMARK_INTERFERON_GAMMA_RES-
PONSE_MSigdb_C2 is seen to be an outlying pathway. B. PELOD 48 h. C. Enrichment results were filtered using a p-value (0.001) and an FDR (0.01) threshold. The 
plots display the top 25 pathways. 
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to be up-regulated (p-value 0.01 FDR 0.01); at PELOD 24 h, cytoplasmic 
gene function was upregulated (p-value 0.01 FDR 0.01), and finally at 
48 h, extracellular gene function upregulated (p-value 0.01 FDR 0.01) 
(Fig. 3). Enrichment mapping through the Cytoscape application 
generated significant pathways at time 0, pathways related to cell nu-
clear function; at 24 h, cytoplasmic gene function and at 48 h, extra-
cellular gene function. The Enrichment map node size represents the 
number of genes in the gene set; edge thickness is proportional to the 
overlap between gene sets. 

3.4. Functional enrichment analysis 

A graphical representation functional enrichment analysis using g: 
Profile software was undertaken. Data was parsed through the g: Profile 
platform from the WGCNA-generated gene modules for selected clinical 
traits. Generated Manhattan plots according to PELOD 0 h, 24 h, and 48 
h are shown (Fig. 5). The x-axis represents functional terms grouped and 
color-coded by data sources (e.g., Molecular Function from GO is red; 
the sources not included in the analysis are shown in grey). The y-axis 
shows the adjusted enrichment p-values in the negative log10 scale. The 
light circles represent insignificant terms (if available). P values in the 
outputs are color-coded from yellow (insignificant) to blue (highly sig-
nificant or smallest possible p-value). From the Manhattan plots, PELOD 
48 and 24 h appear to have more enriched genes than PELOD 0 h. At 
PELOD 24 h, GO cellular component pathways include a nuclear lumen, 

intercellular cytosol, organelle, nuclear body, and chromatin activity is 
noted. At PELOD 48 h, the pattern of GO cellular component pathways is 
similar to that at 24 h. 

3.5. Enrichment plots 

According to the odds ratio (OR), the innate response, depicted by 
neutrophil-activation pathways, showed more significant expression at 
PELOD 24 h (p-value = 2.96e-15 OR = 4.06 FDR = 1.07e-12) and 48 h 
(p-value = 4.13e-12 OR = 3.80 FDR 5.35e-09) compared to PELOD 0 h 
(p-value = 1.27e-21 OR = 2.83 FDR = 1.80e-18)(Fig. 4). In addition, the 
OR at PELOD 24 h showed. For the 48-h PELOD, OR beyond 5.0, 
included the TRANSCRIPTIONAL REGULATION by RUNX3_REACTOME 
and Regulation of APOPTOSIS_REACTOME. Pathways present at PELOD 
0 but not at the other time points include GO pathways related to the 
mitotic cycle and the Golgi sub-compartment. Pathways present at 24 h 
and not at PELOD 0 or 48 h included GO pathways related to the cyto-
plasmic vesicle membrane, endoscope and import function into the cell. 
Regarding cytokine signaling, no pathways were seen at PELOD 0 h, but 
GO pathways were present at 24 and 48 h. 

3.6. Machine learning 

The applied machine learning techniques are summarised (Table 2). 
Among the six algorithms used, ANN provided the most accurate 

Fig. 5. WGCNA generated gene lists for A. PELOD 0hrs, B. PELOD 24hrs, and C. PELOD 48 h were then parsed through the g: Profile web application to show the 
enriched genes. Key is GO - Gene Ontology, GO: MF - Molecular Functions, GO: BP - Biological Process, GO: CC - Cellular Component, REAC: Reactome, KEGG - Kyoto 
Encyclopedia of Genes and Genomes, TF - Transpac, CORUM - CORUM protein complexes, HP - Human Phenotype Ontology, MIRNA – miRTarBase. 
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prediction. After preprocessing the dataset using SMOTE, PCA was 
employed, which included 99% variance in the dataset used for applying 
machine learning techniques (Fig. 6). For the ANN, a three-layer neural 
network was constructed. The first layer was the input layer which 
contained 16 neurons having “relu” as an activation function. The input 
layer accepts the input from the gene and forwards it to the second layer. 
The second layer is the inner hidden layer, which is used to construct the 
model, containing eight neurons with “relu” as an activation function. 
The parameter is mapped in hidden layers to one of the most appropriate 
feature classifications and ends with a predicted output. The third layer 
is the output layer which contains “sigmoid” as an output function. This 
layer differentiates total values obtained from inner hidden layers into 
two classes, 1 for yes and 0 for no. During this process, the loss function 
binary cross entropy was used, which provided the network with gene 
information to improve its knowledge of the input data. The Adaptive 
Moment Estimation (Adam) optimizer and activation function ReLU was 
used to improve this by changing the weights of each neuron and then 
trying again to improve prediction. Changing weights alters the extent to 
which the input neurons affect the final result; this implies that some 
parts of the input data may impact output variables more than others. 
Hyperparameter tuning was employed to reduce errors between the 
training and testing sets for optimal learning. The training and test 
scores were 100% and 100%, respectively, the same for the imbalanced 
and balanced datasets. 

4. Discussion 

Sepsis is a rapidly developing condition associated with systemic 
instability. Utilizing MSS as a septic shock model, a unique temporal 
microarray dataset from infants with MSS in PICU was scrutinized 
through WGCNA analysis [18]. This dataset, with six mRNA sampling 
points, enabled tracking of sepsis progression using WGCNA analysis. 
Thus allowing PELOD scores at 0, 24, and 48 h to be correlated, repre-
sented by a module-trait matrix, to gene expression data (Fig. 2). We 
propose that this is the inaugural integration of PELOD, a pediatric 
clinical scoring system, with transcriptomic data to delineate enriched 
gene expression modules in acute sepsis. The WGCNA analysis revealed 
a dynamic transition in gene function pathway enrichment, from nu-
clear to cytoplasmic, and finally to extracellular, associated with the 
PELOD times. Gene expression activity consistent with nuclear activity 
in sepsis was also noted by Wong et al. (2010) in pediatric polymicrobial 
sepsis [26]. Moreover, Walsh et al.(2016) corroborated the utility of 
WGCNA in unveiling gene-modular relationships in adult ICU patients 
over a longer period (7 days–6 months); their study demonstrated gene 
modular enrichment for skeletal muscle regeneration and deposition of 
the extracellular matrix [27]. Further, our study highlights the useful-
ness of time-series gene expression data, showing an augmented innate 
response associated with higher PELOD scores at 24 h and 48 h 
compared to PELOD scores at 0 h (Fig. 2). In sepsis, the dysregulated and 
disrupted physiological process requires the restoration of normal reg-
ulatory mechanisms. Based on our results, we propose the temporal 
pattern of gene function enrichment relates to the spatial recovery of 
essential cellular functioning. Firstly there is the correction of nuclear 

mechanisms to facilitate clinical recovery; genes are intricately involved 
in cellular regulation and enrichment of associated gene function 
pathways could be an important early indicator of the normalization of 
cellular function. The temporal analysis then leads to the next spatial 
layer outside of the nucleus, the cytoplasm. Rectifying dysfunction 
occurring in the immediate cytoplasmic area further restores normal 
cellular processes. The final step, as suggested by the temporal pattern in 
genomic function enrichment, is the restoration of the extracellular 
framework. These steps likely hail the normalization of severe organ 
dysfunction seen in patients with severe sepsis or septic shock. 

Langfelder et al. (2013) compared WGCNA over standard statistical 
methods for differential gene expression [28]. Here Langfelder investi-
gated the use of WCGNA for hub-gene selection, finding WGCNA as an 
enhancement over standard statistical approaches incorporating the 
p-value. However, counter to this, Langfelder also found, regarding 
analytical repeatability using independent data sets, that standard sta-
tistical methods were an enhancement over WGCNA. However, WGCNA 
methodology is advantaged by minimizing type 1 and type 2 statistical 
errors. Moreover, WGCNA applied to sepsis may show potential beyond 
traditional clinical biomarkers. For example, LONG et al. (2020) com-
bined WGCNA with a machine learning algorithm and applied their 
workflow to three publicly available sepsis datasets [29]. Hereby 
applying artificial intelligence methods to WGCNA a diagnostic classi-
fier was presented with the potential for early sepsis diagnosis. 

We believe this study (in MSS) to be methodically advantageous over 
sepsis studies where the chosen pathogen is dissimilar. Wong et al. 
(2007) advocated a single-organism approach [30]; assuming similar 
changing patterns in gene expression minimized experimental variation 
and simplified gene analysis. Another factor affecting the host’s genomic 
response to sepsis is age. For example, Wynn et al. (2011) studied neo-
nates, infants, toddlers, and school-age children within 24 h of PCC 
admission in septic shock [31]; demonstrating that developmental age 
impacts the early whole-blood transcriptomic response in sepsis. 
Furthermore, Raymond et al. (2017) explored age effects on the tran-
scriptome, showing infants and children being mostly similar, whereas 
neonates and adults were more different in their responses [32]. In our 
study, recruitment was restricted to infants with no previous 
co-morbidities, thereby minimizing extraneous effects. 

Table 2 reveals that SVM, Random Forest, and DT yield high training 
scores but disappointing test scores, while Naïve Bayes generates com-
parable scores for both training and testing. KNN achieved 90% training 
and 89% testing accuracy on the imbalanced dataset, improved to 94% 
and 93% respectively after dataset balancing with SMOTE. ANN, how-
ever, achieved 100% accuracy for both training and testing, regardless 
of dataset balance. The principal components PC1 to PC3 exhibited the 
highest variances (Fig. 3). Notably, a hyperplane failed to separate the 
training and test data, making SVM, similar to Random Forest, DT, and 
Naïve Bayes, unsuitable for this classification. KNN, using Euclidean 
distance to separate classes, could potentially use an oval circle to 
separate the red dots represented by PC1 to PC3, but its train and test 
scores fell short compared to ANN. Thus, considering all factors, ANN, 
which achieved the highest accuracy (100%) for both training and 
testing datasets, was chosen. ANN excels in capturing non-linear re-
lationships between input features and the target variable, which is 
crucial in the context of sepsis involving complex datasets with intricate 
interactions [33,34]. ANN also performs representation learning, auto-
matically extracting meaningful features from the data. Additionally, 
ANN is adaptable and able to handle large amounts of data, having the 
capacity to capture the dataset complexity through its architecture. 
Hyperparameter tuning further enhances ANN’s performance, making it 
superior to other classifiers in the study [35]. Further, we chose to use 
the SMOTE to address the issue of imbalanced data. SMOTE is a popular 
and effective oversampling method that can generate synthetic samples 
for the minority class by interpolating between existing instances. 
Thereby alleviating overfitting risk while increasing the representation 
of the minority class and improving the learning capability of the 

Table 2 
Results of different ML Models applied to the dataset.   

Imbalanced Dataset, PCA 
99% variance 

Balanced Dataset, PCA 99% 
variance 

Train Score Test Score Train Score Test Score 

SVM 1 0.78 1 0.5 
Random Forest 1 0.78 1 0.93 
Logistic Regression 1 1 1 1 
Decision Tree 1 0.89 1 0.93 
Naive Bayes 0.97 0.78 0.97 0.79 
KNN 0.9 0.89 0.94 0.93 
ANN 1 1 1 1  
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machine learning algorithms whilst preserving data integrity. 
A challenge for sepsis studies is in establishing a correlation between 

clinical manifestations and cellular-level processes. This could be a 
reason contributing to why a significant therapeutic advancement in the 
field has yet to materialize. In trying to relate clinical variables to those 
of gene expression in the analysis, one limitation was the small sample 
size. However, for the application of WGCNA, a minimum of 15–20 
samples are recommended, a criterion which was met in our study (30 
samples) [36]. Despite this, the study advances knowledge related to 
sepsis transcriptomics by linking clinical parameters to gene function 
through the modular approach described. The small sample size also 
presents a challenge for ML. This was circumvented by dividing the data 
into separate training and testing groups, according to a ratio of 70:30, 
randomly selecting samples into each group. We then conducted a 5-fold 
cross-validation to assess model performance. This mitigates the impact 
of the limited sample size and ensures a robust evaluation of our ML 
approach. Future scope of research could include the application of 
explainable AI (XAI) helping to narrow down the focus on specific genes 
and molecular pathways, thereby enhancing the interpretability of 
temporal gene expression data. In addition, it is worth considering 
expanding the future scope of this research to encompass a comparison 
of alternative data reduction techniques beyond that of PCA employed in 
this study. Finally, the study attempted to include therapy information 
by presenting a trait-gene module adjacency matrix (Fig. 2). However, 
due to the methodology employed in this study, there were limitations in 
comparing different therapies and management strategies. This aspect 
should be the primary focus of future research. Additionally, incorpo-
rating diagnostic staging could further enhance the analysis and provide 
valuable insights. 

The temporal aspect of this study capitalizes on the inherent value of 
time-related gene expression datasets. Specifically, each patient’s sam-
ples constitute a temporal sequence, documenting the evolving septic 
process. This allows network methodologies such as WGCNA to be 
effectively utilized, even in studies with small sample sizes. This led to 
the discovery of a temporal-spatial gene expression pattern that could 
have future applications in assessing clinical management strategies and 
developing novel therapeutics. However, a temporal limitation of the 
study relates to the fact that although the study included six-time points, 
there may be other critical time points during the course of sepsis not 
captured. Also, the arbitrary allocation of time points along the sepsis 
time trajectory could affect the analysis of time-dependent changes in 
gene function. In this study time-labeling of patients occurred from 
Pediatric Critical Care Unit admission onwards, independent of disease 
trajectory as accurate clinical time-profiling is not possible. Further, the 
idea of temporal sampling and compartmentalization in sepsis is 
complicated by the heterogeneity of sepsis. Moreover, it is difficult to 

time-match gene expression series without a robust objective definition 
of sepsis. The unknown temporal difference between infection and 
symptom onset in patients, as well as sepsis heterogeneity encompassing 
factors such as symptom onset speed, pathogenesis rapidity, and the 
ability to seek medical assistance, pose numerous challenges. Never-
theless, it is important to highlight that the dataset utilized in this study 
represents a secondary analysis of the first published case series in in-
fants with septic shock [18]. In this dataset, despite potential variances 
due to the various temporal factors, distinct time-associated patterns 
related to gene function were still discernible. Temporal patterns may be 
attributed to the therapeutic drive for physiological stability, reflecting a 
clinical impact on each transcriptome. Looking forwards, temporal 
studies of sepsis are suggested especially with regard to sepsis man-
agement at the bedside and the development of precision strategies. 

5. Conclusions 

This study demonstrated the value of time-related trajectory tran-
scriptomic data and gene co-expression network analysis in under-
standing sepsis evolution in infants admitted to the pediatric intensive 
care unit. Uniquely, the application of WGCNA was shown to correlate 
temporal gene expression with bedside clinical data, resulting in the 
elucidation of a recovery pattern of temporal-spatial gene expression. 
The approach provided insights into the molecular trajectory of MSS, 
permitting visualization of treatment impacts in relation to genomic 
modular patterns in MSS. In parallel, we conducted a comparative study 
employing six machine-learning algorithms - SVM, Naive Bayes, KNN, 
DT, Random Forest, and ANN - for sepsis survival prediction. ANN 
emerged superior, offering 100% accuracy for both training and testing 
datasets. Future work aims to expand the training and testing datasets, 
augmenting the reliability of the resultant ML model. The integration of 
network methods for isolating biologically significant gene modules and 
machine learning for sepsis prognostication heralds a new era for pre-
cision therapeutic strategies. Future exploration into the temporal cor-
relation of physiological and genomics data remains a promising avenue 
to enhance our comprehension of rapidly evolving sepsis. 
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