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Abstract

Biomedical research is becoming increasingly data driven. New technologies that generate

large-scale, complex data are continually emerging and evolving. As a result, there is a con-

current need for training researchers to use and understand new computational tools. Here

we describe an efficient and effective approach to developing curriculum materials that can

be deployed in a research environment to meet this need.

Introduction

Technological advances are driving exponential growth in biomedical data, prompting

demand for training in new data analysis techniques. To keep pace, researchers must acquire

the conceptual knowledge and practical skills needed to analyze large-scale, complex data.

They must obtain this training while also carrying out their research, so the training must be

of short duration, specific to their needs, and effective enough to apply in the near term.

Absent relevant and immediately applicable training, biomedical researchers face significant

barriers to progress and may be unable to adopt new technologies.

To provide relevant, up-to-date training, we have honed a strategy to develop curricula tar-

geted to researchers’ specific needs and skill levels (Fig 1). Curriculum development is labori-

ous, but it must be timely in order to meet training needs as they arise and to keep pace with

technological change. The challenge is to rapidly develop and deploy training that combines

conceptual knowledge with practical skills that can be applied by researchers. Our solution is

to adapt open source materials, including software user guides and tutorials, that describe how

to use software and to supplement these with conceptual information from open source texts

and online lectures to provide understanding of the underlying analytical methods.

These 9 tips describe an efficient process for developing practical, hands-on courses for bio-

informatics skill development. We start by identifying a critical training need. We then find

and adapt open source software tutorials and other materials to develop customized training

modules that can be produced and delivered without too great a lag time. Our preferred format

is to develop a short series of hands-on workshops that can be completed in weekly sessions

with durations of 2 to 4 hours. Although schedules can vary, we find that short sessions sched-

uled at a regular and convenient time maximize participation. We approach learning as a
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social activity [1] and prefer in-person group instruction with small groups of learners—

although we have recently found that live online instruction can be effective. We have

employed this process to create and deliver training sequences for biomedical researchers at

the Jackson Laboratory and neighboring institutions. Our target audience for training is prac-

ticing biomedical researchers who are seeking to learn new data analysis skills. The tips in this

article are designed for training program developers in research organizations, companies,

and universities who provide training to build research workforce skills. There are many

resources that address other aspects of bioinformatics curriculum development and provide

complementary guidelines [2–5]. Our 9 tips outline a strategy for rapid deployment of effective

skills development courses.

1. Identify critical training needs

To provide relevant and up-to-date training, it is important to identify critical training needs.

The topic must be of interest to a broad enough audience to justify the effort needed to plan,

prepare, and deliver. Training should address an immediate need and be directly applicable to

ongoing research. We use several strategies to identify training needs and to define expected

learning outcomes [6] and can perform a training needs analysis in less than 2 months. Impor-

tantly, training needs analysis centers attention on learners, rather than focusing on the

instructor’s desire to teach a favorite topic. Training in basic skills is essential to provide a solid

foundation for more advanced topics and should not be overlooked (see Tip 4).

To identify topics of broad relevance for biomedical researchers, we look for prevalent and

persistent concerns such as those described in Reproducibility Issues in Research with Animals
and Animal Models [7] and the Nature special collection Challenges in Irreproducible Research
[8]. These publications describe performance gaps in research and suggest ways to resolve

these gaps. We used these resources to design Rigor and Reproducibility in Experimental Design
[9], a curriculum that addresses common mistakes in experimental design and provides train-

ing to support reproducible studies. Other resources, such as the Nature collection Statistics
for Biologists [10] or articles like Kick the Bar Chart Habit [11], aim to correct common mis-

conceptions in statistics and help to identify widespread training needs. The need for training

in basic statistical methods motivated our development of Statistical Inference for Biology [12].

Fig 1. A process for efficient bioinformatics curriculum development and training. Effective training starts with identification of training needs. Existing

materials that meet these training needs are curated and adapted to suit the audience. Adapted materials are tested and refined through teaching, feedback, and

revision. The refined curricula are published openly for broad dissemination and reuse.

https://doi.org/10.1371/journal.pcbi.1008007.g001
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We evaluate organizational research strengths and strategic goals. Training that promotes

an organization’s competitiveness or differentiates it from others should be prioritized to meet

organizational needs [6]. For example, an organizational focus on genetic complexity moti-

vated the development of Quantitative Trait Mapping [13], a curriculum that we adapted from

a software user guide for the R package qtl2 (Karl Broman, https://kbroman.org/qtl2/) [14].

Self-organized interest groups provide a clear indication that there is enough interest to sus-

tain a training effort. Participation in interest group meetings can help to gauge existing skills

and identify knowledge gaps. Subject-matter experts can guide the design of training by identi-

fying best practices and methods to address these gaps. We worked with a computational

image analysis group and a domain expert who adapted a scikit-image tutorial [15] for image

processing in Python [16,17]. Interest group members now support one another to sustain and

grow the group’s skills and expertise by teaching introductory image analysis to new members

and contributing to the development of advanced courses.

2. Curate existing materials to meet training needs

It is rarely necessary to build training materials from scratch. Once learning outcomes have

been specified, the next step is to seek out existing training materials. Discussions with col-

leagues at conferences, courses, and workshops are good places to find out about training

materials in specific topics. Digital repositories or collections such as the National Science Dig-

ital Library [18] and Multimedia Education Resource for Learning and Online Teaching [19]

catalog open educational resources, many of which are aimed at graduate and professional lev-

els. Openly licensed online books are an excellent resource for training. The Python Data Sci-
ence Handbook [20], Hands-on Programming with R [21], Data Analysis for the Life Sciences
[22], R for Data Science [23], and Introduction to Data Science [24] all have free versions avail-

able from the authors or publishers. High-quality training materials that can lead to desired

training outcomes are in good supply.

It may be necessary to integrate materials from several sources. When compiling training

material, it is important to discriminate between big ideas that are central to the topic, skills

and knowledge that are critical and enabling, and those that are useful and should be familiar

or accessible [5]. Prioritizing content around big ideas and critical skills is important for train-

ing that fits within tight schedules. Avoid the temptation to provide comprehensive coverage.

Rather than cover lots of information, curricula should focus on core concepts and skills.

Access to supporting material can be provided through links and references.

Here are 3 approaches to preparing relevant materials in order of increasing effort.

(1) Use existing materials that feature an applied approach. R for Data Science [23], for

example, alternates between brief explanation, demonstration, and hands-on practice to teach

R programming. Bioconductor publishes and updates training materials regularly [25]. This

material can often be taught directly with little or no adaptation if your learners possess the

computational and statistical background that they assume (see Tip 4).

(2) Adapt existing materials from user guides and software tutorials to address the learning

goals. Add material to briefly introduce new concepts at the moment they are used in practical

exercises (see Tip 6). Shorten practical exercises so that they can be executed during class ses-

sions to promote feedback and understanding. Avoid longer exercises that require work out-

side of class time. If necessary, develop new short skills exercises. Data Analysis for the Life
Sciences [22] is one example of material that can be tailored for short-term, intensive training

for full-time researchers [12].

(3) Develop new materials only if necessary to meet a critical need for which no existing

materials can be adapted. We produced Rigor and Reproducibility in Experimental Design [9]
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to address a critical need without adapting existing resources. For new materials or adaptations

of existing ones, Teaching Tech Together [26] offers a chapter on lesson design and a lesson

design template to guide curriculum development. Understanding by Design [5] provides a

thorough treatment of the process of curriculum design.

Be mindful of licensing when reusing existing content (see Tip 9). Ideally, the content will

carry an open access license that permits adaptation, such as some licenses provided by Crea-

tive Commons [27]. If not, request permission from the author or publisher before reusing or

adapting content.

3. Balance the conceptual with the practical

Lecture and demonstration are good ways to teach people about concepts but are not good

ways to teach people how to do things such as data analysis or coding. Practical skills are best

learned in a hands-on setting, which requires guided practice and coaching [28,29]. When lec-

ture is combined with guided practice, learners can develop desired skills grounded in under-

standing of larger ideas and concepts [5,30]. To be effective in preparing researchers,

curriculum and training must balance practical training with conceptual understanding of

new methods.

Software user guides and tutorials often explain the procedure for implementing a method

with little detail of how the method works, when to use it, or what the results signify. Research-

ers can acquire procedural knowledge without understanding the underlying method and con-

cepts that are needed to guide appropriate use and interpretation [31]. For example, a

researcher can create a gene expression network in R by following the procedure detailed in a

tutorial yet be unable to describe what it signifies or recognize when something has gone awry.

Practical skills in the absence of conceptual understanding can produce flawed results.

Practical exercises may cover less content, but they provide experiences that support acqui-

sition of new skills such as programming or data analytic techniques [28]. Ideally, practice will

require the same skills that learners will need in their work and will be designed to be challeng-

ing [6].

A balance between the conceptual and the practical equips learners to perform tasks with a

good understanding of what they are doing, why they are doing it, and what the results mean.

Achieving this balance is often a matter of trial and error. One way to measure whether this

balance has been reached is by teaching and collecting learner feedback (see Tip 8).

To illustrate a balance of conceptual and practical, a key idea in image analysis is that

images are arrays that can be analyzed in many of the same ways as other types of data con-

tained in arrays. We demonstrate this idea by analyzing image arrays using standard array

manipulation methods, such as array slicing to crop an image. Familiarity with other tools for

analyzing image data is helpful, but once the concept of images as arrays is familiar, learners

are better prepared to understand and use other methods and software tools.

4. Provide materials for prerequisite knowledge and skills

One of the biggest challenges in developing training materials is to reach an audience with var-

ied backgrounds and skill levels. Laying the groundwork with foundational training can help

to bring all learners to the level of proficiency needed to tackle new material. When developing

materials, look for the assumptions they make about prior knowledge, e.g., statistics or com-

puter programming, as well as key biological concepts. Prerequisite knowledge and skills can

be evaluated through carefully crafted screening questions. For example, a question that asks

learners to rank their programming experience on a scale of 1 to 5 will indicate whether the

course is a good fit for their skill level. Knowing your audience will help to determine which

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008007 July 23, 2020 4 / 10

https://doi.org/10.1371/journal.pcbi.1008007


prerequisite knowledge and skills they will need [32,33]. Interview representatives of the target

audience to identify where they might have difficulty with the materials. It can be helpful to

consider learner personae that personify the target audience [3,26]. Don’t underestimate the

need for prerequisite skills training. Careful attention to the preparation that learners need

before they participate in training increases their likelihood of their success and the overall

effectiveness of the training.

There are many resources available to address prerequisite knowledge and skills. We regu-

larly offer Software Carpentry’s introductory Python and R training [34,35] to bring learners

up to speed in programming skills needed to successfully participate in more advanced topics

such as Basic Image Analysis with Python and Quantitative Trait Mapping [13,17]. Other

resources for providing foundational training include Hands-On Programming with R [21],

Quick-R [36], the swirl package for R [37], Python Data Science Handbook [20], and lessons in

data organization and management from The Carpentries [38].

5. Explain technical terminology as it is introduced

Technical terminology, or jargon, can present a barrier to training across specialized fields of

study. Modify teaching materials to explain technical terms or avoid them altogether by replac-

ing them with clear, understandable language. Be especially mindful of acronyms, which

should always be defined no matter how common or familiar they may seem. In addition, be

aware of context-dependent definitions of common terms. For example, a vector to a mathe-

matician is a one-dimensional array of numbers. In biology, a vector is a disease-transmitting

organism like a mosquito, or a vehicle for transferring genetic material, like a plasmid. Differ-

ing meanings of common terms can cause confusion, so careful attention to meaning in con-

text is warranted. A glossary is a helpful supplement for defining technical terms.

Recruit a partner who works in a different field of study to identify jargon or context-

dependent terms. A nonexpert partner can help to translate the material by explaining the con-

tent in their own words. An expert then checks the translation for accuracy. Favoring the sim-

pler, more direct language helps to circumvent the problem of expert blind spot—in which a

highly knowledgeable instructor delves into technical details before addressing basic concepts

[39]. We worked closely with a computer scientist who served as a nonexpert partner to help

translate statistical concepts in Data Analysis for the Life Sciences [22], making them accessible

to learners with little or no statistics background by rephrasing concepts with language that a

nonstatistician might use [12].

6. Use graphics, tables, and analogies to introduce new concepts

Introducing new concepts at the moment when they are to be used in practice promotes

knowledge retention [1,28]. Simple but precise graphics can be easily understood and reduce

the time needed to introduce key concepts [40]. Many learners will appreciate and quickly

grasp concepts presented in graphical form. Tables are another useful device that can be used

to summarize large amounts of information that can be referred to later. Analogies provide

conceptual models for acquiring new knowledge; they serve as memory aids and as devices for

communicating complex ideas. Supporting graphics or tables can make content more accessi-

ble to those with certain conditions such as dyslexia, though conveying information with

graphics alone excludes those with low vision or blindness [41,42]. Therefore, it is important

to provide captions to ensure that graphics and tables provide complete and self-contained

content. Attention to designing graphics and tables for accessibility benefits all learners, not

only those with access needs.
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We introduce the concept of a genetic marker using the analogy of a landmark, like a build-

ing or a park with a numeric street address. We explain a genotype probability as a measure of

the genotype between 2 adjacent landmarks (markers). Each individual has a genotype at every

position in their genome. However, because we do not measure the genotypes between mark-

ers, there is uncertainty that we represent as a genotype probability. The graphic representa-

tion of genotype probabilities as a three-dimensional array (Fig 2) concisely represents a key

data structure that stores genotype probabilities. We point out that the genotype probabilities

at a given location for one individual should sum to one. We used this graphic to introduce the

concept to learners inQuantitative Trait Mapping [13] immediately before they perform calcu-

lations on the genotype probabilities data structure.

7. Customize materials with data relevant to your audience

Learners will be more engaged when examples and practice data are related to their interests.

Customize materials to the background of your learners by updating examples and exercises

with relevant data that mirror their research. In our course on machine learning, we replaced

housing price data in the scikit-learn tutorial [43] with protein expression data that are more

Fig 2. Simple graphics can make complex concepts more concrete and understandable. This example from Quantitative Trait Mapping illustrates a three-dimensional

array of genotype probabilities across individuals, genotypes, and genomic positions. Each cell in the three-dimensional array represents a specific genotype in one

individual at a genomic location. Uncertainty about genotypes is captured by probabilities that must sum to one at each location for each individual.

https://doi.org/10.1371/journal.pcbi.1008007.g002
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familiar and relevant to biomedical researchers. It can sometimes be challenging to find and

adapt data that work to illustrate key concepts. As an alternative to reworking examples and

exercises, relevant data can be incorporated in a capstone exercise. Relevant data motivate

researchers to learn and help them to transfer what they have learned directly to their own

work.

8. Teach, collect feedback, revise, repeat

Frequent monitoring of learner feedback should be built into the curriculum. Incorporation of

quick checks of understanding delivers information to both instructors and learners about

what has or has not been understood and can indicate where adjustments are needed [44].

Assessments, such as brief written responses to a question or hand signals to indicate agree-

ment or disagreement with a statement, reveal whether learners understand an idea or con-

cept. Short practical exercises indicate whether learners are able to perform a specific task and

provide valuable information about progress to both learners and instructors. A desired learn-

ing outcome in experimental design, for example, is the ability to calculate an appropriate sam-

ple size for an experiment. To address this training outcome, we ask learners to calculate

power given sample sizes and statistical significance thresholds and describe the trade-offs

between sample size, significance threshold, and cost. This brief exercise provides immediate

feedback and an opportunity to correct misunderstandings. When practical exercises resemble

tasks that learners would use in their work, retention and transfer of skills to work are

enhanced [45].

Real-time assessment enables on-the-fly decision-making [46,47]. An instructor can choose

to slow down and spend more time on a difficult topic or may move on to cover more material.

We have adopted a practice featured in workshops offered by The Carpentries [38], providing

students with 2 different-colored sticky notes that they can use to signal when they are falling

behind or doing just fine. The same sticky notes are used to collect written feedback about the

training at the end of each session. To evaluate the effectiveness of training in meeting learning

goals, learners assess their own progress in pre- and postsession self-reports using structured

questions that address their understanding of learning goals. Learners’ reactions, such as confi-

dence in applying newfound skills or perceived usefulness of course content, can identify

weaknesses and inform revisions needed to improve training.

Curriculum development should be an ongoing and iterative process that improves with

each teaching event. The first teaching event might be bumpy and a bit disjointed, so choose a

pilot audience that is hungry for learning, forgiving, and likely to provide useful critical feed-

back. Assessments drive the feedback loop between identification of critical training needs,

curriculum design, and provision of training, which results in continuous improvement to

training and positive response to training needs [5]. A rapid and robust feedback loop between

instructors and learners allows information to flow in both directions, providing instructors

with the opportunity to incorporate feedback and respond to learners’ needs during and after

instruction.

In our first iteration of Quantitative Trait Mapping [13], learners were shown how to calcu-

late the probabilities of genotypes at genomic locations between marker loci where the geno-

types are measured. Feedback obtained at the end of the session indicated that learners did not

understand why they were calculating genotype probabilities. In the next iteration, we prefaced

the practical exercise with a short lecture on genetic markers and recombination. Following

the exercise, we examined the results and discussed how they fit into the larger goal of map-

ping genetic loci that control complex traits. This provided the background knowledge and

context they needed to apply the method in an informed way.
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9. Make materials openly accessible for learners and other

instructors

Following training, learners will need to review the material to reinforce their learning, to

revisit concepts and skills not fully understood, and to access supplemental material. It is also

helpful for learners to access training material beforehand so that they can preview content.

Openly accessible materials can be adapted and taught by others, which has a multiplier effect

for the reach of the work [48]. Provide materials in an easily accessible format such as a website

or public repository. We use a Github template provided by The Carpentries to develop and

publish lessons [49]. The template carries a Creative Commons Attribution license, which per-

mits sharing and adaptation and requires appropriate attribution. The template design incor-

porates prerequisites, overarching questions, specific learning objectives, and exercises. As an

example, we used this template to adapt parts of the book Data Analysis for the Life Sciences by

copying openly licensed source files (R Markdown) for the book into the template. After modi-

fying the source files, the template publishes a web page for each source file. The final result is

published as a website [12]. Specific instructions for building a lesson and generating a website

are provided in The Carpentries lesson template.

Conclusion

We have described our process for producing up-to-date training materials in bioinformatics

that is responsive to researchers’ needs and that is efficient to produce and deliver. We do so

by identifying critical training needs and tailoring existing materials to meet these needs and

produce desired learning outcomes. To tailor existing materials, we look for skills and prior

knowledge they assume and supply background training to bring learners to the level needed

to approach this new material. Training is organized around a few key concepts, with much

class time devoted to applied practice that reinforces these concepts. We introduce concepts

using simple graphics and analogies and define all technical terms and acronyms or replace

them with more straightforward language. To motivate our learners and make training more

relevant to their research, we customize training to use data sets from their field of study. We

improve the curriculum through an iterative process of teaching, collecting feedback, and

revising materials to iteratively improve results. Finally, we disseminate our materials as openly

licensed websites and Github repositories so that others can access, teach, share, and adapt

them as they see fit. This process efficiently creates training to provide researchers with the

data analysis skills and knowledge they need to engage with new technologies. Effective train-

ing with timely delivery can open new avenues for inquiry and can drive successful and pro-

ductive research.
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