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Abstract

To standardize metabolomics data analysis and facilitate future computational develop-

ments, it is essential to have a set of well-defined templates for common data structures.

Here we describe a collection of data structures involved in metabolomics data processing

and illustrate how they are utilized in a full-featured Python-centric pipeline. We demonstrate

the performance of the pipeline, and the details in annotation and quality control using large-

scale LC-MS metabolomics and lipidomics data and LC-MS/MS data. Multiple previously

published datasets are also reanalyzed to showcase its utility in biological data analysis.

This pipeline allows users to streamline data processing, quality control, annotation, and

standardization in an efficient and transparent manner. This work fills a major gap in the

Python ecosystem for computational metabolomics.

Introduction

Metabolomics aims to comprehensively detect, identify, and quantify the diverse small mole-

cules, i.e., metabolites, present in biological systems. This provides key information on bio-

chemical phenotypes, often reflecting the function of genes and genomes. With the progress of

technologies, metabolomics is becoming a regular component of many biomedical projects

[1,2,3,4]. Thousands of metabolomics datasets are now available in major data repositories

[5,6,7]and the annual citation of "metabolomics" in PubMed now exceeds ten thousand. Due

to this increasing popularity, solutions for processing such data need to be better incorporated

into the regular bioinformatics workflows [8,9,10]. This integration will require an ecosystem

in both the R and Python programming languages, the two dominant languages for bioinfor-

matics, each with unique strengths and a large user community.

The foundational tool of a software ecosystem in computational metabolomics is the pre-

processing tool that, among other functions, converts raw data into feature tables representing

signals of interest likely to represent metabolites. XCMS [11] has served this role for the R pro-

gramming language, and various tools for further data processing, including annotation,
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quality assurance and quality control (QA/QC), have been built utilizing its outputs

[12,13,14,15]. Many optimization tools and pipelines have been built around XCMS

[16,17,18,19,20]. Despite the popularity of Python in machine learning and bioinformatics in

general, a robust ecosystem for metabolomics in Python remains lacking, primarily due to the

lack of a preprocessing tool for metabolomics raw data. While a handful of Python tools have

been developed over the past decade [21,22], they are either dated or not production-ready.

With the recent release of Asari [23], a preprocessing tool implemented in Python, Python has

become a viable option for data processing in computational metabolomics.

As computational metabolomics evolves, the community continues working to define oper-

ational terminology and best practices. These efforts have resulted in various workgroups and

multiple publications [24,25,26,27]. Since metabolomics analysis is often part of larger bio-

medical projects, there is an urgent need to standardize terminologies that cover sample prepa-

ration, experimental protocols, steps of software processing and metadata. While Asari fills a

key gap in the computational metabolomics ecosystem, the fundamental issue of interoperable

data structures remains a challenge. To standardize the computational aspects of metabolo-

mics analysis and empower future computational developments, a set of common, well-

defined, and reusable data structures will be essential, regardless of the programming language.

This paper, therefore, describes a collection of common data structures involved in metabolo-

mics data processing and illustrates how they are utilized in a full-featured Python-centric

pipeline.

Design and implementation

Semi-automated data analysis pipelines are essential for the mainstream adoption of metabolo-

mics and its continued growth in the biomedical sciences. With pipelines, researchers of

diverse backgrounds can process their data quickly and meaningfully, allowing for higher

throughput and more extensive experiments. Furthermore, pipelines allow researchers to

define highly reproducible workflows that are repeatable and reproducible by others. Our

pipeline, named the Python-centric pipeline for metabolomics (pcpfm), enables start-to-finish

metabolomics data processing based on Asari. The pipeline ingests centroided mzML data or

Thermo raw files and returns a human-readable set of tables summarizing the detected fea-

tures and their annotations and sample metadata. Annotation is a major step after preprocess-

ing, utilizing multiple sources, such as authentic compound libraries and tandem mass

spectral libraries. Annotation levels in pcpfm are described in accordance with Schmanski

2014 [28]. Additionally, the pipeline performs various processing steps, including normaliza-

tion, feature interpolation, removal of rare features, quality assurance, quality control evalua-

tions, and generates PDF reports to summarize results.

We designed a set of core data models, which are described in the MetDataModel package

and summarized in Table 1. The goal of MetDataModel is to encourage reuse and extension,

therefore the data models are kept minimal. Developers are free to extend them to more

detailed and specific models. Such extensions and applications are exemplified here in the

pipeline package, pcpfm.

A mass spectrum typically consists of a list of m/z (mass to charge ratio) values and corre-

sponding intensities. It can be from a full scan (MS1) or tandem mass spectrometry (MS2 and

beyond). The mass spectrum can be in profile mode or centroid mode. In profile mode, the

term “mass peak” is still used by some applications to refer to a group of m/z values that belong

to the same ion species. Data in profile mode can be converted to centroid mode (mass peak

picking) by software from the manufacturers or from scientific community, and usually done
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by default in format conversion to the common mzML format. Centroided data is much

reduced in size and there is little reason to use profile mode.

A mass spectrometer is often connected to chromatography (typically liquid phase or gas

phase); therefore, such an experiment acquires many mass spectra at different chro-

matographic retention times. Thus, data processing requires the detection of signals across

spectra, i.e., scans. Such signals are typically presented as an extracted ion chromatogram (EIC

or XIC). In the Asari software, this concept of EIC is extended to a “mass track” [23], which is

a vector of intensity values spanning the full scan range under one consensus m/z value. The

use of mass tracks leads to new algorithms for alignment and feature detection [23]. Because

“peak picking” or “peak detection” could refer to either mass peaks or elution peaks, we rec-

ommend the explicit term of elution peak detection. An elution peak is defined by ion inten-

sity along the axis of retention time in the 2-dimensional representation. A mass peak is

defined by ion intensity along the axis of m/z, usually in profile data. We define an elution

peak at the level of a sample and as a feature at the level of an experiment (Table 1). The defini-

tion of “feature” here is consistent with its use in XCMS [11] and MZmine [29], but different

from OpenMS [30]. OpenMS refers to a feature as a group of ions, likely due to its root in pro-

teomics. The relationships between these concepts are illustrated in Fig 1A.

The relationship between metabolite, reaction, enzyme, gene, pathway, and network is

described on right side of Fig 1A, which are collectively considered as a “metabolic model”.

Metabolic reactions are central to connect these entities, and the links to enzymes (proteins)

and genes (measured in transcriptomics, genomics and epigenomics) are the most important

basis for analyzing multi-omics data [31,32]. These concepts mirror the extensive development

Table 1. Core concepts implemented in the MetDataModel package.

Name Operational Definition

MS Spectrum List of m/z values and associated intensity, typically from a scan on a mass spectrometer

Mass Track An extracted ion chromatogram of consensus m/z, spanning the full retention time.

Elution Peak Peak of intensity values along the axis of chromatography.

Feature A set of peaks that are aligned across samples, specific to an experiment.

Empirical

Compound

A group of associated features, typically isotopes and adducts, that belong to the same tentative

compound and co-elute if there is chromatography.

Compound A metabolite or a chemical of xenobiotic origin, including contaminants.

Reaction Biochemical process that interconverts one or more compounds, often catalyzed by an

enzyme.

Enzyme A protein that catalyzes a biochemical reaction.

Gene An inheritable sequence of nucleotides, some of which code for proteins.

Metabolic Pathway A series of linked reactions that typically involve structurally related compounds, usually

defined by human knowledge.

Metabolic Network A set of reactions connected by shared compounds. Mathematically identical to pathway, but

not limited by pathway definition.

Metabolic Model A collection of metabolic reactions and their associated metabolites, enzymes, and genes.

Additional parameters, e.g. reaction rates and flux rates, can be included.

Study A collection of experiments on a set of related samples.

Experiment A set of acquisitions collected on a set of samples using consistent methods.

Method The approach and parameters used for data collection in an experiment, e.g., chromatography

and ionization parameters.

Sample A biological sample or a control sample that is analyzed in a study. A sample can be analyzed

in multiple experiments, by a single or multiple methods. An instance of data file generated by

analyzing a sample is referred to as an acquisition. Analytical replicates need to be modeled

explicitly if used.

https://doi.org/10.1371/journal.pcbi.1011912.t001
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from the field of genome-scale metabolic models (GEMs) in the previous two decades. Con-

necting GEMs with the experimental measurement by mass spectrometry is not trivial,

because a) the identifiers of metabolites need to be consistent; b) charge states of molecules

and experimental measurements need to be consistent; c) a significant knowledge gap exists

Fig 1. Design of core concepts and data models in computational metabolomics. A) The core concepts in

MetDataModel with the metabolomics data processing in salmon and metabolic modeling in grey. We introduce

"empirical compound" as a key bridge in between. The dashed lines indicate alternative workflows. Created with

Biorender.com. B) Abridged empirical compound example including the listing of MS1 features, annotation from MS2

and other sources. This JSON format enables chaining of multiple annotation tools.

https://doi.org/10.1371/journal.pcbi.1011912.g001
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between the GEMs and experimental metabolomics; and d) metabolite identification is limited

in experimental metabolomics.

The reality of metabolomics is that many features are not definitively identified. We have

introduced the concept of empirical compound to describe the measurement of a tentative

metabolite (Fig 1B). For example, in LC-MS (liquid chromatography coupled mass spectrome-

try) metabolomics, some isomers (molecules of identical mass) may not be resolved, limiting

the annotation level. That is, the isotopologues and adducts clearly belong to the group, but the

group may be isomer A, isomer B, or a mixture of both. Empirical compounds model this

property and serve as an operational unit to link computational steps. It has been part of the

software implementation since version 2 of mummichog and version 4 of MetaboAnalyst [33].

This design enables an organized presentation of degenerate MS1 features, and chaining anno-

tation from MSn and multiple methods. The isotopes and adducts from pre-annotation are

modeled as a grid structure, made computable by the khipu package [34], which is also incor-

porated in the pcpfm pipeline. Annotation remains the most critical step in the meaningful

interpretation of metabolomics data and the field faces the challenge of handling annotation

uncertainty and probability. Empirical compounds provide an operational data structure as a

path forward.

The abstract concepts in Table 1 and Fig 1 are intrinsically agnostic to programming lan-

guages. We demonstrate their implementation in Python 3 and JSON in MetDataModel. The

pcpfm package is written in Python 3 and JSON is used extensively for intermediary data.

Many pipeline data structures inherit from, and expand upon, objects provided by the MetDa-

taModel library. Specific extension of empirical compound is exemplified in Fig 1B.

The inputs to our pipeline minimally consist of .mzML or .raw files and a metadata CSV

file, that minimally maps sample names to acquisition file paths. While Asari was initially

developed for orbitrap data, pcpfm is expected to be compatible with the data from major

manufacturers that can be converted into mzML format [35]. The final output consists of a fea-

ture table detailing the observed m/z and retention time values for observed features mapped

to unique identifiers, an annotation table mapping these identifiers to annotations and meta-

data for those annotations, and a third table summarizing the acquisition and experiment-

level metadata. This three-table format handles multiple annotations gracefully and will be

supported in future versions of MetaboAnalyst and Mummichog for downstream analysis and

interpretation.

Each step in an analysis corresponds to one command in the CLI and one function in the

main pipeline process (S1 Table). In brief, every analysis starts with assembling an experiment

object from the metadata and acquisition data. This experiment object records the location of

intermediates on disk for reuse in later steps. Optionally, any.raw files are converted to cen-

troided .mzML files using the ThermoRawFileParser [36] before preprocessing with Asari

which yields a "preferred" and "full" feature table.

Quality control is necessary in every project but depends on the experimental design. Multi-

ple QA/QC operations are available including PCA, t-SNE, correlation cluster maps, Z-scores

that quantify the median pearson correlation to all other samples, the number of features or

missing features per-sample are implemented as well as scatter plots that summarize median

and mean feature intensities plus bar plots of TICs (total ion counts) at each step in the work-

flow are implemented. PCA and t-SNE are implemented as wrappers around scikit-learn func-

tions [37], cluster maps use a combination of seaborn [38] for hierarchical clustering and

either scipy [39] or numpy [40] for the calculation of the input correlation matrix. Z-scores

and TICs are calculated using custom routines implemented using a mixture of pandas [41]

and numpy. All plotting is based on matplotlib [42] except clustermaps which are using sea-

born [38].

PLOS COMPUTATIONAL BIOLOGY Metabolomics data models and Python pipeline

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011912 June 6, 2024 5 / 16

https://doi.org/10.1371/journal.pcbi.1011912


Operations to correct common data quality issues are provided including normalization,

blank masking, batch correction, removal of uncommon features, and missing value imputa-

tion. Blank masking, missing value imputation, and feature removal is implemented using cus-

tom routines in Pandas and numpy, batch correction using a wrapper around pycombat [43],

while normalization is implemented using numpy and can be performed in a one-pass or two-

pass approach. In the two-pass approach, normalization is done within a batch of samples and

then the batches are scaled to one another using their median TIC values based on the con-

served features. Missing value imputation is implemented using a scalar multiple of the mini-

mum observed intensity for that feature in the dataframe. Reasonable defaults for the user-

provided parameters for these operations are implemented and described in S1 File while the

ordering of steps is modifiable. For example, batch correction is sensitive to missing features

and can be performed after removing frequently missing features or after missing value impu-

tation; however the default workflow consisting of blank masking, outlier sample removal,

normalization, outlier feature removal, imputation and filtering before annotation is recom-

mended in that order to remove bias in each subsequent step. Outlier samples can be removed

using any of the Z-scores or other 1-D metrics described above via a user-provided filter; how-

ever, by default, samples that have an absolute value for their number of features Z-score

greater than 2.5 are dropped.

Empirical compounds are constructed from a feature table using Khipu [44] and most

methods for empirical compounds concern annotation. Using MatchMS [45,46], MS2 based

annotations can be generated using data from DDA or deep scan workflows such as AcquireX

[47,48] and MS2 spectral databases such as MoNA [49] or authentic standards libraries. MS1-

based annotations are generated using our JSON metabolite services library and appropriately

formatted inputs or m/z and retention time similarity to authentic standards. These annota-

tions can be mapped back to any feature table to generate the previously mentioned tabular

output. PDF reports can be created using the fpdf library [50]. The contents of the report can

be defined by the end-user via a JSON template but by default include PCAs, log TICs, pearson

correlation clustermaps, missing feature Z-score plots for each feature table, an accounting of

all annotations and features explained for each set of empirical compounds created, a time-

stamp for the report generation, and a timeline of all commands used in the analysis. Example

reports are provided in S2 and S3 Files.

Most operations in the pipeline are chainable meaning they can be performed in a user-

specified order with outputs from previous iterations being used as inputs. This flexibility

allows users to build custom workflows; however, example workflows are provided as .sh and

nextflow scripts [51]. Nearly all parameters are user-configurable, but reasonable defaults are

provided and documented, allowing the pipeline to be as hands-off or hands-on as the end

user desires.

Results

The pcpfm is designed to prepare data for downstream data analysis, which can be performed

by bioinformaticians or data scientists without a background in mass spectrometry. The major

steps are shown in Fig 2A and a comparison of the provided functionality to other metabolo-

mics data processing tools [19,20,52,53,54,55,56] is shown in S2 Table. Additionally, we dem-

onstrate first the results on data processing, annotation, and quality control, then on biological

applications. Seven metabolomics and one lipidomics datasets from four studies, three fully

public [57,58,59] and one in-house, are used in these examples (details in S1 File).

A distinct advantage of pcpfm and Asari is the computational efficiency to process large

datasets. The computational times are summarized on two high-resolution LC-MS datasets of
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1685 samples. Processing and QC use less than half an hour on a laptop computer for each

datasets, while the annotation step depends on the databases involved while report generation

depends on the number of samples and intermediate tables selected for figure generation

(Fig 2B). The computational performance of the pre-processing and pre-annotation was

assessed by comparing a minimal pcpfm workflow consisting of pre-processing and pre-anno-

tation only using asari and khipu respectively versus a MetaboAnalystR v4.0.0-based pipeline

(using OptiLCMS v1.1.0’s implementation of XCMS, and CAMERA [13], details in S1 File) on

Fig 2. Design and computational performance of the pcpfm pipeline. A) The pipeline has five major sections:

assembly, data processing, quality control, annotation and reporting. assembly creates the on-disk data structures

needed for pcpfm analysis and optionally performs conversion to mzML. Data processing encapsulates everything

from the start of a processing job to the creation of a feature table using Asari. Quality control consists of multiple

chainable commands that allows for a raw feature table to be curated into a table suitable for downstream analysis.

Annotation concerns the mapping of empirical compounds to metabolites using formula or MS2 similarity to

databases, m/z and retention time mapping to authentic standards and optionally, MS2 similarity. Finally, reporting

handles the creation of the three-table format for downstream analysis, PDF report generation, and JSON outputs for

advanced users. Squares represent inputs and outputs, arrows represent dependencies between any steps, while bolded

sections collectively represent a minimal workflow. Created with BioRender.com. B) Using the two largest datasets (N

is the number of MS1-only acquisitions), the high computational performance of our pipeline is demonstrated. Most of

the wall time is spent during reporting. All steps are single threaded by default except Asari which uses 4 processes. In

the HILIC+ and RP- datasets, 40008 and 32086 features are detected (full asari table including non-study samples)

corresponding to 27851 and 23400 empirical compounds of which 16431 and 11962 received a level 4 annotation and

614 and 267 received a level 2 annotation. C) A comparison of the wall time required for a minimal pcpfm workflow

(Asari+Khipu) compared to its MetaboAnalystR v4.0.0 equivalent on subsets of three studies where N is the number of

MS1-only acquisitions included in each subset. For the CheckMate subset, 3902 and 8907 features were detected by the

MetaboAnalystR and PCPFM minimal workflows respectively while in HZV029 HILIC+ and RP- MetaboAnalystR

workflow detects 2835 and 5966 features while the pcpfm workflow detects 12142 and 9939 respectively. All pcpfm

counts are for the preferred feature table.

https://doi.org/10.1371/journal.pcbi.1011912.g002
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a subset of three datasets (Fig 2C), showing a clear improvement in the performance of our

pipeline.

The metabolomics community have a consensus that metabolite annotation should be

reported according to its confidence level. We have incorporated empirical compounds into

both MS1 and MS2 annotations. By building empirical compounds first, i.e. pre-annotation via

the khipu package, MS1 annotation is improved because the search of databases does not

query many degenerate features (Fig 3A). The MS2 annotation utilizes MatchMS but with an

optimization using an interval tree algorithm [60]. Because there are many implementations of

MS2 annotation under similar principles, it is important to be explicit on the algorithm in

pcpfm (Fig 3B). The MS2 annotation in pcpfm is efficient enough to run large experiments on

consumer-grade hardware, as shown in Fig 2B. When authentic compounds are used to anno-

tate metabolites, it is straight forward to match their m/z and retention time to biological sam-

ples (Fig 3C). Multiple annotations of different sources are chained in the empirical

compound data structure (Fig 1B), which is amendable to future enhancements, e.g., context

specific databases.

We compared the MS2 annotations generated by the pcpfm to those from vendor’s soft-

ware, Compound Discoverer (CD) [48]. Full details for the annotation procedures in both soft-

wares are provided in S1 File; however, CD annotations did require an additional step to map

the generated annotations to the Asari feature tables which used an m/z tolerance of 10 ppm

and a retention time tolerance of 30 seconds. For both pcpfm and CD annotations sets of

annotated features were constructed by concatenating the annotated compound name with

the asari feature (e.g., Caffeine_F1345) and these annotation sets then compared using set

operations in Python. Considerable overlap is seen between CD and pcpfm annotations (Fig

3D). Because the algorithm in CD is closed source, it is not feasible to trace the differences

between the tools, which highlights the importance of open-source tools for continued

improvement.

The applications of pcpfm to quality control are demonstrated on a dataset consisting of 17

batches and 1685 samples (Fig 4). This analysis was performed using a batch-correction varia-

tion of our default workflow (S1 File). First, the QC metrics generated by Asari are summa-

rized using kernel density plots to illustrate the high quality of features yielded by asari as

evidenced by their high cSelectivity, peak shape (i.e., goodness of fit to a gaussian), their peak

areas and high signal-to-noise ratio (Fig 4A). Next, hierarchical clustering of the inter-sample

pearson correlation across all features was performed revealing two clusters of samples, repre-

senting a clear batch effect that was traced back to a recalibration of the instrument after batch

8 (Fig 4B). The log TICs of a random subset of samples and PCA plots were generated to fur-

ther investigate these batches and identify abnormal samples (Fig 4C and 4D). The standard

two-pass normalization does not adaquetly correct the batch effect; however, after normaliza-

tion and batch correction via pycombat, both the log TICs and PCA show more consistency

and no sub-clustering, suggesting the batch effect was largely mitigated.

Another common data quality issue addressed by the pcpfm are failed injections. Using the

per-sample number of features Z-score, we demonstrate the ability to detect failed injections

automatically in two datasets (Fig 4E). Failed injections are readily identified by their anoma-

lously low Z-score (red) compared to successful injections (black). When the failed injections

are compared to the preceeding successful injection, the absence of clear signal is appreciated

in their TICs, confirming they were failed injections (Fig 4E). These results motiviated the

inclusion of this metric and a default cutoff of |Z|> 2.5 for the removal of outliers by default

in the pcpfm.

Multiple previously published datasets were reanalyzed using pcpfm to evaluate the pipe-

line’s general suitability. These analyses were performed using either a modified default
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workflow or, in the case of the CheckMate analysis, a minimal workflow as described in S1

File. Bowen et al (2023 [57]) designed a specialized xenobiotic-focused workflows to detect

metabolites of the drug sunitinib. Our pipeline with default parameters detects all but one of

the previously reported sunitinib-related metabolites in cardiomyocyte cell pellets and all fea-

tures in culture media (Fig 5A) based on a 5 ppm m/z tolerance and 10 second retention time

tolerance to the features reported in Bowen et al 2023. The sole missing feature is due to low

signal-to-noise ratio, not passing Asari quality threshold (Fig 5B). Using ANOVA followed by

Benjamini-Hochberg correction [61], sunitinib-treated and control cell pellets were compared

and hierarchical clustering performed using the significant features (Fig 5C). This yields two

distinct clusters corresponding to the treated and control samples consistent with an induced

metabolic response resulting from sunitnib exposure as reported in the original analysis [57].

These results indicate the potential of pcpfm as a simplified yet broadly applicable workflow.

To compare pcpfm feature detection against a state-of-art R-based pipeline (MetaboAna-

lystR v4.0.0), we reprocessed a subset of published metabolomics data on the CheckMate

Fig 3. Annotation methods in pcpfm. A) Empirical compounds are constructed from Asari feature tables using khipu, which groups degenerate features such as

isotopologues and adducts. The inferred neutral mass of an empirical compound is compared to known metabolites to generate level 4 annotations (via JMS,

https://github.com/shuzhao-li-lab/JMS). Panels A, B, and C created with BioRender.com. B) Level 2 and 1a annotations are generated using MS2 similarity.

Experimental MS2 spectra are mapped to empirical compounds and then compared to reference spectra, to annotate metabolite structures. C) Level 1b

annotations are generated based on m/z and retention time match to authentic chemical standards. The use of empirical compound improves search efficiency

and reduces false positives, while annotations at all levels can also be mapped to the feature level. D) Overlap of MS2 annotations by pcpfm and CD in the two

HZV029 plasma datasets. Detailed dissection of the differences is difficult since CD is closed-source.

https://doi.org/10.1371/journal.pcbi.1011912.g003
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immunotherapy cohort [58] using comparable minimal workflows as previously described

(additional details in S1 File). The authors’ in-house metabolite library serves as a proxy of

ground truth here. An m/z tolerance of 5 ppm and an RT tolerance of 5 seconds was used to

identify library features in the MetaboanalystR and pcpfm results.The sets of identified features

were then compared to ground truth using the set logic operations in Python. The pcpfm con-

sistently detects more features representing more true metabolites than the MetaboanalystR

workflow, however, considerable overlap is observed (Fig 5D).

Lastly, as an example for generating biologically meaningful results, we reanalyzed the

metabolomics data from a COVID-19 exposure and recovery cohort (Ansone 2021, [59]).

Fig 4. Examples of quality control in the pcpfm pipeline. A) A collection of QA/QC metrics generated by Asari on

an example dataset (“HZV029 Plasma RP-”). B) The correlation clustermap of all study samples and pooled samples

from the HZV029 Plasma RP- dataset (preferred feature table) illustrating the batch effect induced by instrument

calibration. C) Log10 TICs of a random subset of samples before normalization, after normalization, and after batch

correction. D) PCA demonstrating the presence of a batch effect (top) and its removal (bottom). E) Detection of failed

acquisition by the number of feature Z-scores. The failed injection is highlighted in red and a representative “good”

injection in blue for both the plasma HZV029 Two-Phase HILIC- and HZV029 QC dataset (left and right, top). The

two-phase failed injection is simulated by replacing a missing sample with an empty vial while the other was identified

post-hoc. The TICs of the failed and good injections are shown in red and black respectively (bottom).

https://doi.org/10.1371/journal.pcbi.1011912.g004
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Following pcpfm, the significant features tested by ANOVA followed by a Tukey’s HSD [62]

were subjected to hierarchical clustering (Fig 5E), which recapitulated the original observation

that metabolic profiles cluster by COVID infection and recovery vs. control in the Anosne

2021 paper. The box plots of selected features confirm the patterns of abundance changes in

participant groups (Fig 5F). Interestingly, two features (Fig 5F, top) are found to belong to an

empirical compound with a single level 4 annotation to 1,2-dipalmitoylphosphatidylcholine

Fig 5. Applications of pcpfm to analyzing biological datasets. A) In the Bowen 2023 cardiomyocyte dataset, the

pcpfm identifies most of the reported sunitinib-related features in both cell pellets and media using a standard

workflow. Asari and pcpfm output both a preferred feature table and a full feature table, the former of higher feature

quality and the latter more inclusive. B) The mass track for the sole feature undetected in the Bowen 2023 cell dataset is

shown and the suspected undetected peak is in red box (M2_2), which fails to pass Asari’s quality requirement. C)

Significant differential metabolite features between sunitinib exposure groups in cell pellets. ANOVA p-values are

corrected for multiple testing by Benjamini-Hochberg method. D) Both the pcpfm and MetaboAnalystR were used to

extract features from a subset of the CheckMate study. Of 202 compounds in their authentic standard library,

MetaboAnalystR identified 167, while the full table from the pcpfm identified 198 of the confirmed features. E)

Clustering pattern of the Ansone 2021 cohort using features differentially abundant between treatment groups. F)

Example boxplots of differentially abundant features in the Ansone 2021 cohort. F201235 and F201855 (top) were

mapped to the same empirical compound that was tentatively annotated as 1,2-DPPC, a pulmonary surfactant by its

sole level 4 annotation. Significance was evaluated using ANOVA and post-hoc Tukey’s HSD test in E and F.

https://doi.org/10.1371/journal.pcbi.1011912.g005
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(1,2-DPPT), a pulmonary surfactant known to be less abundant in COVID patients than

healthy controls [63]. This result demonstrates that novel biology can be gained with the

pcpfm. The Jupyter notebooks and workflows underlying these examples are included in the

pcpfm code repository, so that users can easily perform their own data analysis based on the

templates.

Availability and Future Directions

The MetDataModel and pcpfm are available through GitHub (https://github.com/shuzhao-li-

lab/metDataModel and https://github.com/shuzhao-li-lab/

PythonCentricPipelineForMetabolomics), and both are installable by pip via PyPi or from

source. All dependencies are open source and downloadable via pip, except for the Thermo-

RawFileConverter and mono framework, both of which are optional. Example workflows are

provided in bash and as nextflow; however, users can implement their own using the CLI or

the pipeline internals available using standard Python conventions for APIs. API usage will be

officially supported in an upcoming release.

Future development of pcpfm will implement additional options and methods for data pro-

cessing, including normalization, interpolation, and batch correction. Improving support for

non-orbitrap instruments is another priority for the pipeline and the underlying Asari algo-

rithm. A cloud-based application is planned to allow users to process data in a friendly web

interface.

Supporting information

S1 Table. List of commands in the pcpfm pipeline, their inputs and outputs, and if they are

chainable.

(XLSX)

S2 Table. Comparison of pcpfm features to other metabolomics data processing tools.

(XLSX)

S1 File. Description of datasets, methods for generating previously unpublished datasets,

and compound discoverer annotation workflow.

(PDF)

S2 File. HZV029 Plasma HILIC+ example PDF report.

(PDF)

S3 File. HZV029 Plasma RP- example PDF report.

(PDF)

S4 File. zip of pcpfm v1.0.13.

(ZIP)

S5 File. zip of MetDataModel v0.6.1.
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