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Abstract: T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic
infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous
T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion.
The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals
causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like
programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell
immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3
(Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune
checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies,
suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of
tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics
revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes
and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will
review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC.
We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials
targeting various molecular factors mediating T-cell exhaustion in PDAC.

Keywords: pancreatic ductal adenocarcinoma; PDAC; T-cell exhaustion; epigenetics; Thymocyte
selection-associated high mobility group box protein; TOXs; tumor microenvironment; TME

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies with a five-year
survival rate of only 9%. Globally, the mortality numbers are very close to incidence numbers projecting
pancreatic cancer as the 7th leading cause of cancer-related deaths. Globocan statistics predict the
incidence number to be almost doubled by 2040 (http://globocan.iarc.fr/) [1].

The poor prognosis associated with the lack of efficient treatment modalities makes PDAC one of
the most lethal cancers [2]. PDAC tumors are unresponsive or mildly responsive to chemotherapy,
radiotherapy, and immunotherapy. The desmoplastic dense stroma [3], bearing relatively low mutational
loads, the low number of tumor neoantigens [4,5], the poor tumor immunogenicity [6,7], acquired tumor
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intrinsic therapy resistance, genetic and epigenetic instabilities, and the unique immunosuppressive
tumor microenvironment (TME) are the proposed characteristics for the impaired drug delivery and
low therapy response.

Highly complex pancreatic TME modulates the infiltration of immunosuppressive cells and the
activity of immune regulatory molecules (Figure 1); thus, it contributes to the downregulation or
dysfunctionality of antitumor immune response, including the exhaustion of T lymphocytes [8].
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Figure 1. Cellular and molecular immunomodulatory factors of T-cell exhaustion in pancreatic cancer
in the tumor microenvironment: myeloid-derived suppressor cells (MDSCs) and tumor-associated
macrophages (TAMs) inhibit T-cell function directly and indirectly through tumor-derived proteins,
such as Granulocyte-macrophage colony-stimulating factor (GM-CSF), C-C Motif Chemokine Ligand
2 (CCL2), Colony Stimulating Factor 1 (CSF1), and Bcl2-associated athanogene 3 (BAG3). Activated
pancreatic stellate cells (aPSCs) recruit suppressive immune cells and impair antitumor cells in the
stroma and, via secretion of interleukin 6 (IL-6) they induce immune checkpoints on T cells in a C-X-C
motif chemokine 12(CXCL12)-dependent manner. They also promote the proliferation of MDSCs and
IL-35 secreting Bregs. Intratumoral Tregs secrete suppressive cytokines IL-10, IL-35, tumor growth
factor β (TGF-β), thereby inducing T-cell dysfunction to impair Teff cell proliferation. Tregs also elevate
kynurenine concentration and reduce available tryptophan required for effector Tcell’ effector function
in TME by producing indoleamine 2-3 deoxygenase (IDO). l-arginine level, which is associated with
improved antitumor activity, is diminished in tumor microenvironment (TME), leading to decreased
T-cell survival. Th17 cells suppress Treg function, and the role of IL-17 produced by Th17 cells is
controversial. The cancer cells bearing mutations in KRAS, enolase, mesothelin in TME also contribute
to T-cell dysfunction through inducing checkpoints on T cells, leading them into exhausted phenotype.
Oncogene Kirsten Rat Sarcoma (KRAS) upregulates expression of GLUT-1 gene in cancer cells to increase
glucose influx for glycolysis known as Warburg effect. Due to mitochondrial dysfunction, reactive oxgen
species (ROS) level is increased in pancreatic cancer cells, which promotes tumor progression.
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First defined by viral immunologists, T-cell exhaustion is a differentiation state of T cells upon
chronic antigen exposure, which triggers T-cell receptor (TCR) signaling during chronic infections [9–11]
and increases during aging [12].

It is also associated with tumor progression in the context of cancer. Growing pieces of evidence
suggest that T cells that have undergone productive initial activation, diverge into two subtypes:
(1) progenitor/memory-like and (2) terminally differentiated exhausted T cells (Tex). The latter
differentiates itself from effector and memory T cells by its unique epigenetic and transcriptional
program [13]. It appears that Tex cells present some characteristic features, which are (i) upregulated
expression of checkpoint inhibitory receptors, (ii) decreased production of antitumor cytokines,
(iii) increased secretion of tumor-promoting chemokines and (iv) high apoptosis rate [14,15].
Nevertheless, some specific stimuli, the properties of TME, the type of the tumor, and the antigen
exposure mode, shape the generation of distinctive molecular and immunophenotypic features of Tex
in the context of cancer.

The exhaustion is a gradually progressing mechanism that includes distinct dysfunctional states [9].
Recent findings and therapeutic reactivation studies suggest that there is a potential therapeutic window
in the formation of Tex population in which Tex are still able to proliferate and express a broad spectrum
of effector function-related genes [16]. Therefore, the exploration of signaling pathways driving
exhaustion in cancer to fight with immunotherapy resistant solid tumors, like PDAC, is crucial.

Here, we focus on the recent advances in transcriptional and epigenetic reprogramming
mechanisms of T-cell exhaustion driven by immune modulatory signals in the tumor microenvironment
of pancreatic cancer. Also, we review and discuss new emerging targets in PDAC immunotherapy and
the relevant clinical trials.

2. Influence of the Pancreatic Tumor Microenvironment on the Function of T Lymphocytes

To evade immune surveillance, cancer cells develop an immunosuppressive microenvironment
by recruiting immune suppressive cells and exert an epigenetic, transcriptomic and metabolic
reprogramming in Teff lymphocytes via either secreted soluble molecules or by the expression
of membranous proteins (e.g., immune checkpoints (ICP)/inhibitory receptors (IR)). Notably, the TME
of PDAC comprises cancer-associated fibroblasts, a high number of immunosuppressive cells,
pancreatic stellate cells (PSC), endothelial cells, neuronal network, and immune regulatory soluble
factors, all together are called desmoplastic stroma [17–20]. In fact, the pancreatic tumor’s stroma
contains low to moderate levels of immune infiltrates compared to the core of the tumor, which is mostly
the case in melanoma. In metastatic PDAC, total T-cell infiltration is even more reduced than primary
PDACs [7]. This desmoplastic stroma, occupying 50% of the total tumor mass, not onlyforms a barrier
for antitumor immune cell infiltration, but also negatively effects antitumor response, including the
inhibition of T-cell activation [21].

2.1. Immunosuppressive Cells

Regulatory T cells (Tregs), tumor-associated macrophages (TAMs), myeloid-derived suppressor
cells (MDSCs) and regulatory B cells (Bregs) are the primary immunosuppressive cells in PDAC’s
microenvironment along with activated pancreatic stellate cells (aPSCs) and dense fibrotic stroma
(Figure 1) [22–26]. These immunosuppressive cells are already present in preneoplastic lesions (PanINs),
indicating that they may be key players in tumor initiation and progression by blocking the antitumoral
activity of effector CD4+ and CD8+ T cells [27]. Moreover, the delicate balance between the populations
of CD4+ and CD8+ subsets determines the anti- or the protumorigenic environment. Notably,
the orchestration of naïve CD4+ T cells’ differentiation into Th1, Th2, Th17, Th9, Th22, and Tregs is
crucial to remove the immunosuppressive constrains from the tumor environment and to boost effector
T-cell activity. As such, the dynamic ratio of Treg/Th17 determines tumor response of the immune
system [28,29].
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Tregs are responsible for preventing excessive or unwanted T-cell activation, maintaining
self-tolerance as a defense against autoimmunity, and often correlating with cancer progression [30,31].
Typically, infiltrated Foxp3+ Tregs in TME exert suppression on effector function by secreting
inhibitory cytokines, IL-10 and TGF-β or through the cell-mediated engagement of inhibitory receptors
(IRs), T cell immunoreceptor with Ig and ITIM domains (TIGIT), cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4), programmed cell death protein-1 (PD-1), T cell immunoglobulin and mucin
domain-containing protein 3 (TIM-3) [32–34] and promotes the exhaustion-associated transcriptomic
machinery in tumor infiltrated lymphocytes.

In the pancreatic TME, Tregs constitute almost 25% of CD4+ TILs and contribute to the increased
immunosuppression. The important role of Tregs in PDAC has been shown in a murine model, in which
disruption of these cells was correlated with tumor regression [35]. Tregs also elevate kynurenine
concentration as a result of tryptophan catabolism by producing indoleamine 2-3 deoxygenase (IDO)
(Figure 1) and lower available tryptophan in TME, which is necessary for active Teff metabolism. [21,36].
Indeed, either depletion of Tregs or blocking TGF-β signaling in tumor models in mice prevented
immunosuppression of tumor-infiltrating CD8+ cells [37].

An effector CD4+ T-helper cell subset, which secretes the cytokine IL-17 and called Th17 cells,
are found in human tumors (Figure 1) [28,38]. IL-17 is a potent cytokine that induces the stimulation of
IL-6, TNF, G-CSF, chemokines, and matrix metalloproteases to induce inflammation [39]. Despite their
vital function in host defense against pathogens, the role of IL-17 and Th17 in carcinogenesis is still
controversial. The pro- or antitumorigenic function of Th17 cells is dependent on various factors,
including the type of cancer, the type, and strength of the stimulation in which the cells are exposed
during activation.

In the context of T-cell exhaustion, which drives immune evasion of PDAC, the plasticity of Th17 to
Treg shift plays a significant role in maintaining the immunosuppressive environment. PDAC patients
were shown to carry Treg dominated Treg/Th17 cell ratio [40]. Consistent with the protumorigenic
effect, oncogenic KrasG12D-dependent Th17 infiltration into PanIN lesions promoted PDAC initiation
and progression via IL-17 secretion of immune cells and upregulation of IL-17 receptors in epithelial cell
in a murine model of PanIN harboring tamoxifen-inducible oncogenic Kras allele (Mist1-CreERT2/+;
LSL-KrasG12D; R26mTmG) [41]. Also, the distribution of Th17/IL-17+ cells in patients with metastatic
pancreatic cancer showed an association with higher Th17 presence in the TME and peripheral
blood [42]. In PDAC, IL-17B/IL-17RB family promotes malignancy by inducing pro-inflammatory
pathways and facilitating pancreatic cancer cell recruitment of macrophages. Clinical findings of
IL-17RB upregulation in PDAC patients as well as the positive correlation of IL-17 signaling blockade
with tumor regression in mice provide additional support for the protumorigenic effect of IL-17 on
pancreatic cancer prognosis [43]. On the other hand, higher Th17 differentiation and IL-17 production
were found positively associated with antitumor immunity in some cancers, including PDAC [28,38,44].
As such, Th17 tumor infiltration into IL-6-expressed murine PDAC tumor delayed tumor growth and
improved survival due to Treg/Th17 balance shifted towards Th17, suggesting that IL-6 promotes this
shift in TGF-β-rich pancreatic TME [45].

M2 type anti-inflammatory macrophages called TAMs also play a significant role in pancreatic
tumor progression and metastasis by facilitating immunosuppressive environment for antitumor
T-cells activity and proliferation through induction of immunosuppressive cytokines and enhancing the
immunosuppressive capacity and the number of tumor stem-like cells in PDAC [46]. In general, TAMs,
once activated by Th2 cytokines, use many strategies to induce immunosuppression. They secrete
suppressive cytokines and factors, IL-10, IL-35, and TGF-β, which contribute to the impairment of
Teff proliferation and activity [47]. Alternatively, TAMs can induce exhaustion by inducing PD-L1
expression on monocytes, which bind to PD-1 on CD8+ cells. Besides, they can also inhibit Teff activity
by producing enzymes that deplete certain amino acids in the environment needed for Teff metabolism.
As such, the overexpression of CD73 and CD39 ectoenzymes by TAMs generate pericellular adenosine
and cause suppression of Teff via activation of the adenosine A2A receptor and eventually cause
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apoptosis [48] (Figure 2). Therefore, the modulation of TAMs has been of great interest in recent years
to overcome exhaustion and dysfunction of T cells and to achieve significant antitumor responses
in therapies. Zhu et al., showed that the blockade of CSF/CSFR1 signaling significantly decreased
the number of tumor-infiltrating TAMs and led to the reprogramming of TAMs, which produce less
immunosuppressive and more antitumorigenic factors. Interestingly, CSF1/CSFR1 blockade achieved
up to 85% tumor regression in a murine model when combined with PD1/CTLA4 inhibitors and
gemcitabine, improved tumor regression in this murine model as well as increased effector CD8+ and
CD4+ TIL infiltration and activity [49].
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Figure 2. Epigenetic and transcriptional reprogramming in an exhausted T cell. Exhausted T cells have
many immune checkpoints (CTLA-4, PD-1, LAG-3, TIM-3, TIGIT, SLAMF6, and VISTA) that are directly
or indirectly induced by the tumor and other cells in TME. Aerobic glycolysis in the Tex cytoplasm is
limited by the down-regulation of GLUT-1, which is activated by the binding of glucose. As a result
of the calcineurin cycle, it causes high expression on NFAT and TCR genes. Exhausted T cells have
low activity of mitochondrial function. The resulting mitochondrial activity decrease induces ROS
production. As a result of hypoxia, which plays an essential role in tumor survival and Tex, it causes an
increased HIFα level and increases lactate and CO2 with degraded pyruvate. A decrease in IFN-γ,
TNF-α, and cytokine secretion, which play an essential role in T-cell activity, is observed when driven to
exhaustion. In the exhausted T-cell nucleus; NFAT, BATF and IRF4 genes exhibit high expression levels
by inducing each other. This gene feedback induces TOX genes, which play an important role in NFAT,
NR4A, and T-cell exhaustion. While Vegf, Tox2, and Eomes genes, which are dependent on TOX gene
expression, are more induced in their expression, Stat-1, 4-1BB, and Tcf7 genes are observed at a low level.
(PD-1: Programmed cell death protein-1, CTLA-4: cytotoxic T-lymphocyte-associated protein 4, TIM-3:
T cell immunoglobulin and mucin domain-containing protein 3, Lag-3: Lymphocyte-activation gene 3,
SLAMF6: Self-ligand receptor of the signaling lymphocytic activation molecule, VISTA: V-domain Ig
suppressor of T cell activation, GLUT-1: Glucose transporter 1, IFN-γ: Interferon gamma-γ, TNF -α:
Tumor necrosis factor alpha, TOX: Thymocyte Selection Associated High Mobility Group Box).
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PDAC utilizes multiple mechanisms to drive T-cell exhaustion. One of the predominant
mechanisms is the abnormal accumulation of immature myeloid cells in the tumor due to tumor-driven
changes in myelopoiesis [50,51]. In PDAC tumors, MDSCs occupy 15–20% of infiltrating cellular mass,
while tumor-associated macrophages (TAMs) hold 5–10%. They are recruited to TME by tumor-driven
immunoregulatory factors. MDSCs are immature myeloid cells, which suppress antitumoral immunity,
leading to cancer progression. There are two major types: (1) the predominant one in PDAC cells:
Polymorphonuclear (PMN-MDSCs) and (2) mononuclear (M-MDSCs) [52]. A high concentration of
MDSCs indirectly leads to suppressed antigen-specific T-cell responses. It is shown that depletion of
a single myeloid subset, the granulocyte-like MDSCs (G-MDSC), can unmask an endogenous T-cell
response, revealing an unexpected latent immunity in GEMM of PDAC [53]. In an autochthonous mouse
model of PDAC (Pdx-Cre1; LSL-KrasG12D; p53R172H), GM-CSF and CCL2 were shown to mediate
cytotoxic T-cell (Tc) dysfunction through prominent infiltration of suppressive myeloid cells expressing
Gr-1+ CD11b+ (Figure 1) [54]. Consistently, Gr-1+ CD11b+ infiltration was positively correlated with
increased GM-CSF production in human PDAC tumors. Alternatively, and myeloid cells’ intratumoral
presence are suggested to exert an immunosuppressive effect in PDAC [55]. The disruption of the
crosstalk between tumor cells and TAMs due to CSF1 and BAG3 depletion in an orthotopic PDAC
tumor model enhanced Tc infiltration and activation (Figure 1), proving the importance of those soluble
factors [46,56]. Zhu et al., define two main subsets of macrophages in PDAC, (1) monocyte-derived and
(2) tissue-resident TAMs. Tissue-resident TAMs not only persisted but undergo significant expansion
during PDAC progression. They also showed that tissue-resident TAMs are more important for
progression than monocyte-derived TAMs since having higher pro-fibrotic profile and their depletion
significantly reduced tumor progression [57]. Similarly, the increased infiltration of both cell types is
associated with poor prognosis in PDAC patients [6,58]. Once enriched in TME, soluble factors like
CCL22, PGE2, and TGF-β secreted by TAMs augment further immune suppression. While CCL22
enhances Treg activation, the latter two leads to attenuating T lymphocyte function [54,59,60].

A subset of B cells called Bregs is demonstrated to have immunoregulatory functions through
secretion of tolerogenic cytokines such as TGF-β and IL-10 [61]. Guo et al. detected a high IL-18
level in pancreatic cancer patients [62]. Furthermore, IL-18 is found to be responsible for the
immunosuppression and decreased Teff activity in pancreatic cancer via inducing Breg proliferation,
which then leads upregulation of PD-1 receptor in B cells [63].

2.2. Pancreatic Stellate Cells (PSCs)

The desmoplastic stroma of pancreatic cancer is mainly comprised of activated PSCs (aPSCs) and
myofibroblasts. PSCs are activated by cytokines, including TGF-β, TNF-α, IL-1, and IL-6. They produce
components of the extracellular matrix, i.e., laminin, collagen, and fibronectin, and MMPs, which give
rise to pancreatic fibrosis [64]. They present certain markers such as vimentin, glial fibrillary acidic
protein (GFAP), and α-smooth muscle actin (α-SMA), fibroblast activating proteinase which promote
the progression of non- invasive PanIN lesions to invasive PDAC. aPSCs exert their tumor-promoting
effect by recruiting suppressive subtypes of immune cells in the stroma by secreting IL-6 M-CSF [65].
In particular, they promote the differentiation [65], recruitment and the proliferation of MDSCs, as well
as IL-35-secreting Bregs in the hypoxic PDAC microenvironment (Figure 1) [66–68]. They are impairing
antitumor T-cell function by inducing immune checkpoints on Tc cells in a CXCL12-dependent manner
via secretion of IL-6 (Figure 1). Also, Ene-Obong et al. reported that aPSCs sequester antitumor
CD8+ T cells around nonadjacent regions in the stroma, resulting in low infiltration of CD8+ cells
into the primary tumor epithelial cells in KPC (Pdx-1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+)
mice, which is associated with shorter survival in human PDAC [69]. Despite the protumor role of
aPSCs in PDAC, there are also contradictory findings showing aPSCs’ antitumor function [19,70].
Thus, the exact role of stroma in PDAC progression and immune suppression remains ambiguous.
In their study, Ozdemir et al. showed that deficiency of α-SMA+ myofibroblasts in stroma resulted in
concentrated Treg and decreased Teff in PKT (Ptf1a-Cre; LSL-KrasG12D; Tgf-βr2flox/flox) mice which
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were corroborated by the human data that PDAC with low number of myofibroblast was associated
with shorter survival [19].

2.3. Amino Acids

T-cell activation is also regulated by the presence of soluble immunomodulatory factors in TME.
Tryptophan, and l-arginine are required for effector function and T-cell survival [71,72]. However,
intratumoral myeloid cells and Tregs, as well as cancer cells, secrete a high amount of specific enzymes,
causing the breakdown of these essential amino acids and their depletion [21,73].

IDO, which catalyzes tryptophan to kynurenine conversion, is overexpressed in PDAC [74],
contributing to attenuated antitumor T-cell responses. Furthermore, increased kynurenine/tryptophan
ratio in the serum of cancer patients who showed resistance to PD-1 blockade implicates that IDO
should also be targeted in combinatorial immunotherapies [74,75].

l-arginine is necessary for Tc function, and L-arginine’s high intracellular levels improved T-cell
proliferation and antitumor function in mice [72]. On the other hand, elevated arginase 1 (ARG1)
produced mostly by MDSCs decreases l-arginine availability, thus decreasing the effector function in
many cancers [76–78]. Likewise, high expression levels of ARG1 is associated with suppressed T-cell
responses and shorter overall survival of metastatic PDAC patients [79–81]. Nevertheless, the pro-
and antitumor roles of l-arginine remains contradictory, especially for arginine auxotrophic tumors.
Some studies showed that arginine deprivation in head and neck cancers and in pancreatic cancer cell
lines leads to impairment of metastatic ability and cell death [82–84].

Adenosine and adenosinergic signaling support Tregand inhibit the Teff function. The hyperactive
signaling was shown in various cancers and mostly correlated with poor prognosis in cancer
patients [85,86]. In PDAC, apoptotic Treg in the hypoxic TME was shown to express a high amount of
the CD73 enzyme that converts adenosine triphosphate to adenosine, contributing to the inhibition of
cytokine expression of Teff (Figure 1). In a xenograft nude mouse model, knockdown of CD73 resulted
in slow tumor growth and increased sensitivity to gemcitabine [87]. The authors also showed that
human PDAC tissues express attenuated levels of miR-30a-5p, which regulates CD73 protein level,
suggesting that tumor growth can be inhibited by elevating miR-30a-5p levels by gene therapy to
relieve immunosuppressive conditions and improve gemcitabine sensitivity [87]. Another critical
factor correlated with PDAC progression is focal adhesion kinase (FAK). Hyperactive FAK in the
tumor was associated with high fibrosis and reduced infiltration of Tc, indicating its indirect function
in forming of dysfunctional T cells and PDAC progression [88].

3. Inhibitory Receptors

The upregulation of inhibitory receptors (IRs) is described as the hallmark of T-cell exhaustion
upon chronic infections and cancer. Immunosuppressive cytokines/factors and cells in the TME in the
presence of persistent tumor antigen stimulation induce prolonged and increased expression of cell
surface IRs including, CTLAntigen-4 (CTLA-4), anti-programmed cell death-1 (PD-1), Mucin-3/T-cell
immunoglobulin (TIM-3), T-cell activation gene (LAG-3) and T-cell tyrosine-based inhibitory motif
(ITIM) on TILs [36] (Figure 2). Upon binding to their cognate ligands on cancer cells, T-cells’ effector
function and proliferation are gradually reduced.

Given that their blockade can partially reverse the partially exhausted phenotype, the expression
profile and the levels of IRs are also drivers of cancer-related T-cell exhaustion process [89]. In PDAC,
like in the other cancers [90–93], IRs prevent CD4+ and CD8+ TILs from being effectively functional;
however, they might also play a role in the regulation of T-cell infiltration in pancreatic tumors. Here we
discuss IRs role in T-cell immunity in PDAC.

3.1. CTLA-4 and PD-1/PDL-1

Unfortunately, neither single nor combined anti-CTLA-4 immunotherapy trials became successful
so far in treating PDAC patients [94,95]. Thus, there is still a lack of knowledge to be filled about
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molecular mechanisms underlying such unresponsiveness of pancreatic cancer. To enlighten this,
Bengsch et al. used the KPC mouse model and found that CTLA-4 blockade on Tregs accumulated in
peritumoral lymph nodes and on Teff cells enhanced CD4+ infiltration; however, it was not sufficient
to recruit CD8+ cells into the TME (Figure 2) [96].

Programmed cell death-1 (PD-1), mostly expressed on effector CD4+ Th cells and CD8+

TILs [90,97–99], binds to its ligands, PD-L1 and PD-L2, on solid tumors [100], on tumor-infiltrating
dendritic cells [101], and on tumor associated-macrophages and MDSCs [102], to prevent chronic
activation of T cells [15] (Figure 2). If antigen-overexposure occurs, PD-1/PD-L1 signaling creates a
positive feedback loop where this signaling becomes dominant and generates an exhausted T-cell
population within the tumor and its periphery by inhibiting T-cell activation upon the recruitment
of SHP2 tyrosine phosphatase which dephosphorylates CD28, attenuating TCR signaling [103].
PDAC is described as ‘immunologically cold’ compared to highly immunogenic melanoma because
of very low surface presentation of neoantigens, and the insufficient Tc infiltration into the tumor
core because of fibrotic trap and TAMs localized in the surrounding of tumor [3,55,102,104] which
result in poor clinical outcomes from immune-checkpoint inhibitors targeting PD-1/PD-L1 and
CTLA-4 [70,105,106]. A comprehensive retrospective study on resected PDAC tumors reported four
major subclasses of tumors based on genomic, transcriptomic and, clinicopathological data. High levels
of tumor neoantigens exist in the subtypes with impaired double-strand break and mismatched repair
mechanisms, implicating that immunotherapy can be successful if applied to the right patient [107].
Fortunately, recent advances in genomics and transcriptomics have been discovering new target
proteins that can improve tumor regression when combined with existing therapies for PDAC [108].

3.2. LAG-3

LAG-3 exerts differential inhibitory effects on TILs by cooperating with other co-inhibitory
molecules upon the MHC II association (Figure 2) [109]. Its excessive expression leads to dampened
CD4+ T-cell activation, enhanced Treg suppressor activity, and decreased cytotoxic function of Tc [110].
Elevated expression of LAG-3 on TILs from patients with PDAC was detected along with increased
PD-1 and CTLA-4 [111], implicating that dual and triple blockade of such inhibitory receptors might
improve the effectiveness of immunotherapy treatment of PDAC. We will discuss such modalities and
the efficacy of multiple blockades of IRs in the immunotherapy section below [112,113].

3.3. Galectin Family

The role of deregulated expressions of Galectins family proteins is implicated in tumor progression
and tumor immune evasion in many cancers. They mediate the crosstalk of tumors and TME [114].
There is increasing evidence that Gal1, Gal3, and Gal9 play important roles in stromal modulation of
ECM, T-cell infiltration, activation, apoptosis, and the formation of the immunosuppressive environment
in PDAC in humans [115]. Upregulation of Gal1 was detected in pancreatic tumors, which activates
PSCs, thereby promoting fibrosis in stroma via autocrine signaling [114,116]. Further, in vitro studies
showed that the paracrine signaling of Gal1 enhances tumor cell proliferation, invasion, and migration,
while it induces apoptosis of T lymphocytes and proinflammatory cytokine secretion [117]. On the
contrary, the absence Gal1 gene in oncogenic KrasG12D-driven PDAC tumor in mice retained an
increased number of CD3+, CD4+, CD8+ T lymphocytes, and decreased levels of CD11b+Gr1+ MDSCs
in TME.

Gal3, overexpressed by PDAC tumors in both human and mouse pancreas with oncogenic
KrasG12D, is associated with tumor progression and immune modulation. Gal3 modulates T-cell
function in various mechanisms. It impairs IFN-γ secretion of TILs when neutralized and removed
from the T-cell surface [118]. Indeed, Gal3 interacts with immune checkpoint LAG-3, which is necessary
for Gal3–mediated suppression of Tc (Figure 2). Moreover, studies in patients with GM-CSF–secreting
allogeneic PDA (GVAX) and PDAC mouse models indicate that Gal3 modulates plasmacytoid dendritic
cells, which are the potent activator of Tc cells and development of MDSCs [119].
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Finally, the role of the Gal9, expressed in both leukocytes and tumor cells in PDAC, has been
shown. The blockade of Gal9/Dectin-1 interaction improved intratumoral T-cell activation in PDAC
and associated with TAM reprogramming, while only Gal9 inhibition enhanced CAR-T-cell cytotoxicity
and alleviated PDAC immunotherapy resistance [120,121]. Gal9 interaction with co-inhibitory receptor
TIM-3 on Teff, Th, and innate immune cells induce dysfunctional programming in T-cells in chronic
infection [122]. Whereas the single nucleotide polymorphism in ORF of TIM-3 in the Chinese
population was shown to increase the susceptibility to gastric, non-small lung cancer and pancreatic
cancer, implicating the importance of Gal9/TIM-3 signaling [123,124].

3.4. TIGIT

TIGIT is a recently identified member of the CD28 family, acting as a co-inhibitory receptor
(Figure 2) [125]. It expresses on NK cells and T cells, specifically on activated memory and follicular
Th cells, and a subset of Treg cells [125]. In T cells, TIGIT binding inhibits T-cell proliferation,
cytokine production, and TCR signaling in a cell-internal manner [126,127].

3.5. SLAMF6

Signaling lymphocyte activation molecule family 6 (SLAMF6) is a cell surface receptor expressed
on activated T lymphocytes [128], macrophages, and APCs [129]. Although its co-regulative function
on antigen-driven T-cell response was shown in viral infections, its immunomodulatory role in cancer
is not clear. Yigit et al. examined Tc cells of anti-SLAMF6 injected mice with melanoma to test whether
there is an increase in effector functions. Intracellular staining of Tc cells showed that effector markers,
lysosomal CD107a and granzyme B, and IL-2 expressing Tc cells were significantly increased in number.
A lower percentage of CD8+PD-1+ TILs in anti-SLAMF6 injected mice were found compared to the
control group, which suggests the activation of Tc’s in the tumor [130]. There is also a relation between
the SLAMF6 gene and PDAC. The analysis of miRNAs from pancreatic tissues of 178 PDAC patients
and four healthy subjects showed that the SLAMF6 gene was predicted to be regulated by significantly
under-expressed miRNAs in PDAC [131]. Further investigations are needed for clarifying the role of
the SLAMF6 in the immune modulation of pancreatic cancer.

3.6. VISTA

V-domain Ig Suppressor of T-cell Activation (VISTA) has recently drawn attention as a potential
target for PDAC. Blando et al. showed that VISTA predominantly exists in the pancreatic stroma
of human metastatic PDAC patients and reciprocally correlated with antitumor T-cell response
and cytokine production of TILs (Figure 2) [7]. Given the expression profiles of Tc from human
PDAC patients, Balli et al. suggested that patients with pancreatic cancer can be categorized to
apply patient-specific treatment modalities based on co-expression of CTLA-4, TIGIT, TIM-3 and
VISTA (Figure 2) [132]. In fact, combinatorial therapies, including VISTA for tumors with highly
immunosuppressive TME like PDAC, can be promising since VISTA is induced by hypoxia [133] and is
mostly presented on MDSCs, TAMs and T cells [134]. Therefore, relieving immunosuppressive factors
from TME can enhance the recovery of exhausted T cells.

3.7. TIM-3

T-cell immunoglobulin and mucin domain 3 (TIM3) belongs to IRs containing non-conventional
signaling domain without a defined inhibitory domain in the cytoplasmic tail and relays inhibitory
signaling through interaction with multiple ligands, conferring a context-specific Tex relevant
activity [135]. It is mostly expressed in inflammatory IFNγ-producing CD4+ T cells (Th1), CD8+ T cells,
NK cells, and tissue-resident FoxP3+ Treg [136]. Exhausted T-cell populations with a severe phenotype
in both cancer and chronic infections are shown to co-express PD-1 and TIM-3 [137]. Nevertheless,
in solid tumors, they can comprise the majority of TILs, leading to a failure in tumor regression [138].
In metastatic gastrointestinal solid tumors with ascites, including pancreatic cancer, TIM-3 co-expresses
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with PD-1 on TILs, which is associated with worse clinical outcomes [139]. According to Pu-Ji et al.,
high TIM-3 expression was significantly higher in pancreatic cancer than in healthy pancreas based on
immunohistochemical analysis of patient samples. Also, a significantly shorter median survival of
patients with TIM-3 expression than the patients with negative TIM-3 suggests that TIM-3 plays a role
in immune infiltration, evasion, and metastasis of pancreatic cancer [140].

4. Transcriptional and Epigenetic Reprogramming of T-Cell Exhaustion TOX and TOX2

In recent years, new regulatory mechanisms and the associated genes that drive progressive
differentiation of effector to dysfunctional T cells in chronic infection and cancer were discovered
by a group of researchers utilizing transcriptomics, epigenomics guided mass cytometry profiling,
and systematic gene set analysis [13,141–144]. In their cutting-edge paper of 2018, Bengsch et al.
identified exhaustion-specific gene signatures and they set them as biomarkers for exhaustion,
including IRs, metabolic enzymes, chemokine, and cytokines transcription factors in chronic
infection [13]. Among those, Tox genes stood out as their expression seemed unique to exhausted
phenotype and was not detected in naïve, memory, and effector subsets. Further mechanistic studies
came up a year later in subsequent publications by Khan et al., Scott, Alfei et al., Seo et al. [141–144].
They revealed the function of TOX and TOX2 as central regulators of exhaustion. By utilizing ATAC-seq,
RNA-seq, sc-RNA-seq, the studies revealed the signaling and epigenetic regulators of T-cell exhaustion
in chronic infections and cancer. The common finding of all the groups was that TOX regulated
by NFAT1 was distinctively expressed at very high levels in tumor-specific exhausted T cells in an
inducible liver carcinoma mouse model called AST mice which bears Cre-mediated expression of the
oncogene SV40 T antigen (Tag), the Albumin-floxstop-Tag (AST) mouse model generated by Stahl et al.
to study antitumor immunity [145]. Both transcriptional and epigenetic reprogramming by TOXs alter
the gene expressions of IRs; Teff related transcription factors (TFs), and cytokines/cytotoxic molecules
in T cells (Figure 2).

Scott et al. founded their recent study on their previous findings [14] that antigen-specific naïve
cytotoxic T cells carrying oncogene SV40-T antigen (TCRtag) transform into dysfunctional T cells
driven by epigenetic changes during tumorigenesis. The authors showed that there were progressively
increasing and persistent expression of TOX in Tc liver cancer and murine melanoma during tumor
progression, in contrast to temporary upregulation of TOX in memory and effector cells in acute
infection [141]. Moreover, the TOX expressing tumor-specific CD8+ cells demonstrated phenotypic
exhaustion markers, i.e., high levels of IRs, low expression of effector cytokines IFN-γ and TNF-α;
however, low levels of TCF-1, a key transcription factor that determines exhausted T cell fate for cellular
differentiation and persistence [141,146]. Furthermore, they presented more proof that tumor-specific
T-cell exhaustion is driven by a prolonged encounter with tumor-specific antigen as tumor non-specific
Tc did not express a high level of TOX gene and remained functional, unlike the tumor-specific
TCRtag cells. Lastly, a significant finding of this study was that T cells engineered to knock out TOX
in T cells (TOXKO TCRtag) transferred to mice with tumors were far from having strong effector
function. They produced low Granzyme B, IFN-γ, and TNF-α and showed low levels of IRs (PD-1,
TIM-3, LAG-3, 2B4) presentation, which implies that modulation of IRs might be impaired with
functionality. Eventually, they decreased in number and died, which was corroborated by increased
levels of apoptosis-associated molecules, active caspases 3 and 7, Annexin V. The analysis of human Tc
from melanoma, breast, lung, and melanoma cancer supported the findings in mouse experiments that
the exhausted T cells are a tumor-reactive, TOXhigh, IRhigh distinct population [141,147].

A detailed molecular mechanistic explanation is provided in Alfei et al.’s results in the lymphocytic
choriomeningitis virus (LCMV) mice model and the hepatitis C virus in humans [144]. Previously,
it was shown that the chromatin of Tex cells remodel upon encounter with tumor antigens to a
transient open state and remain open and stable for long-term due to continuous exposure, and keep
its open state even after the chronic antigen stimulation was resolved [14,148]., Notably, the state of
chromatin of Tex can be used to quantify reversible and irreversible Tex populations in tumors based
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on differentially expressed membrane proteins such as CD38, CD39, 2B4, and CD101. The study of
Alfei et al., elucidated this mechanism in chronic infection mouse model and showed that initial TOX
induction is resulted from the demethylated Tox locus which is initially induced by high antigen
stimulation of the T cell receptor. The authors found that the chromatin regions expressing the cytokine
transcription factors, inhibitory receptors, effector marker proteinIL-10, IFN-γ, and TNF-α, NR4a2,
NFAT pathway were more accessible and transcriptional accessibility differentially changed in CD8+

based on TIM3 expression in the course of chronic infection [5]. In this regard, TOX function in
reprogramming T cells gains prominence in PDAC since a high population of Eomes+ PD-1+ Tc is
associated with low antitumor immunity [149] and short survival in PDAC patients [58].

Interestingly, when T cells were engineered to have a conditional deletion of the DNA-binding
domain in the Tox gene (mutant-TOX), in chronic infection, PD-1 expression decreased,
cytokine production induced, effector KLRG1+, and viral control improved, indicating more
a polyfunctional, more-effector phenotype development [144]. As also observed by Scott et al.,
mutant-TOX cells showed an initial expansion but then died in the long term under chronic antigen
stimulation, despite they, in the short term, expressed the same level of the transcription factor TCF-1 for
T-cell maintenance compared with WT. Overall, these findings indicate that TOX serves as a supporting
factor for the tumor antigen-specific Tc to persist in the tumor environment and a self-protection
mechanism from overstimulation and dying.

Khan et al. explored early epigenetic events mediated by TOX and TOX interacting proteins that
cause a shift from effector to an exhausted state in the Tc population in acute and chronic infections
and tumor progression. Their principal findings point out that TOX makes protein complexes with
chromatin modifiers for the chromatin openings and the closings. Among the binding partners,
the HBO1 complex, which is involved in acetylation of histone of H3-H4, was identified as major
binding partners of TOX. Diversely, it was also found that TOX binds to repressive chromatin modifiers
such as DNMT1, LEO1, PAF1, SAP130, and SIN3A. Thereby, KLRG1+ Teff cell differentiation was
suppressed, cytokine production and cytotoxicity were lost. Consequently, the whole transcriptome
in TILs was subjected to change due to either direct or indirect effects of TOX-driven chromatin
reprogramming. For instance, certain chromatin regions holding Nr1d2, Atf3, Bcl6, Sox4 transcription
factors, and cellular stemness-related genes Nanog, Sox2 were blocked in the absence of TOX,
implicating TOX has a wide range of binding partners to regulate open and close chromatin states [142].

Chimeric antigen receptor (CAR)-T cell therapy, which utilizes genetic engineering to redirect
a patient’s T cells to target cancer cells, showed promising results in hematological malignancies
but limited function in solid tumors such as pancreatic cancer [150]. Beside many challenging side
effects, CAR-T cells can also be exhausted with time and become nonfunctional [151–153]. To find if
exhaustion occurs in engineered T cells, Seo et al. transferred CD8+ CAR T cells targeting human
CD19 cells into mice with melanoma tumors (human CD19-expressing B16-OVA melanoma) to analyze
the expression profile of the CAR-Tumor Infiltrating Lymphocytes (CAR-TILs). CAR-TILs expressed
gradually increasing amounts of TOX, TOX2, PD-1, and TIM-3, while IFN-γ and TNF level diminished,
implicating that the engineered T cells become exhausted over time. Also, CAR-TILs with double
deficiency of TOX and TOX2 were more effective in mediating tumor regression than single knockouts
or WT. Then, they compared TOX double knockout (ToxDKO) with WT CAR-TILs. They showed that
expression of PD-1, TIM-3, LAG-3, was significantly lower and their cytolytic activity outperformed
their wild type counterparts [143]. The lower TCF-1 and Eomes levels in TOXDKO suggest that
TOXs regulate the CAR-TILs’ fate in a tumor. The researchers also showed a mechanistic link for the
upregulation of TOX, TOX2, and the nuclear receptor NR4A1, which is identified to induce T-cell
dysfunction [154]. As shown by Khan et al., calcium/calcineurin signaling activates transcription factor
NFAT in CD8+PD-1highTIM3high CAR-TILs. TOX and NR4A generate a positive feedback loop,
and with the contribution of NFAT, they all drive the upregulation of IRs in CAR-TILs [142].

Overexpression of vascular endothelial growth factor (VEGF) and VEGF receptors played
an essential role in the formation of high microvascular density in pancreatic cancer [155–157].
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They emerged as adverse prognostic factors in terms of patient survival [158]. A recent study
by Kim et al., points out a VEGF-A induced TOX signaling cascade, which drives transcriptional
reprogramming for T-cell exhaustion in anti-PD-1 resistant colorectal cancer [159]. In the presence of
VEGF-A, anti-CD3 stimulated T cells from healthy human subjects presented upregulation in inhibitory
receptors and the expression of proapoptotic molecules, indicating the critical role of VEGF-A in
TOX-regulated epigenetic changes in chromatin of T cells that result in attenuated T cell effector
capacity [160].

4.1. NFAT and NR4A and TOX-Associated Transcription Factors

Nuclear Factor of Activated T cells (NFAT), activated via calcium/calcineurin pathway, has a
role in the regulation of gene expression in T cells, and it is highly expressed in pancreatic cancer
(Figure 2) [147,161]. The expression of TOX genes was shown to be activated by NFAT, both in vivo and
in vitro [143]. The findings of Khan et al. revealed the mechanism underlying the upregulated TOX
expression Tex. They showed that NFAT2 is necessary to induce TOX expression but not indispensable
for induction since enforced TOX expression in NFAT2KO mice also resulted in Tex [142]. Xiao et al.
also showed NFAT overexpression inhibits the Teff function by binding to the transcription factor
activator protein 1 (AP-1) site on chromatin [162]. Basic Leucine Zipper ATF-Like Transcription Factor
(BATF) and Interferon Regulatory Factor 4 (IRF4), are TCR signaling sensitive molecules that are
important transcription factors working in collaboration with NFAT [163]. Man et al. defined these
transcription factors in chronic infection. Especially NFATc1, BATF, and IRF4 all converge to establish
features of exhaustion in Tc, including upregulation of IRs and decreasing the TCF1+ T cells in number
(Figure 2) [163]. Given the roles, these two transcription factors should be included in mechanistic
studies of T-cell exhaustion.

NR4A orphan nuclear family consisted of Nr4a, Nr4a, Nr4a3, places in the downstream of
NFAT. Two papers published in 2019 by Liu et al. and Chen et al. demonstrated that this family,
particularly NR4A1, was upregulated and led to dysfunctionality by modulating epigenetic and
gene expression features in Tex cells chronic infection and cancer [154,164]. Thereby, LAG-3, PD-1,
and TIGIT and transcriptional repressors were upregulated, while effector and metabolism-related
genes were suppressed due to significantly different H3 trimethylation levels on lysine 4 (H3K4me3)
at the corresponding loci [154]. The authors also interrogated NR4A1 function in a mouse model of
lymphoma by deleting it (Nr4a1DKO) in CD8+ T cells and transforming them into tumor-bearing
mice. They found that in the absence of NR4a1, Teff exhibited significantly better tumor infiltration
and effector function at eliminating tumors than WT CD8+ T cells and low levels of PD-1 and TIM-3.
Regarding mechanistic explanation, they revealed that Nr4a1 competes with c-Jun and mostly with
AP-1 to bind their consensus sequences, thus induces exhaustion by antagonizing AP-1 mediated
gene expression.

Investigation of CAR-TILs by Chen et al. corroborated the findings of Liu et al. As such, Nr4A1 and
NR4A2 expressions were positively correlated with the expression of PD-1 and TIM-3, and NR4A
was enriched in transcriptionally active and accessible regions in CD8+PD-1high TILs from human
melanoma and non-small cell lung cancer [148,164]. The authors also presented that in triple Nr4a
triple knockout (NR4ATKO) CAR T cells, bZIP and Rel/NFκB binding motifs were found to be more
accessible compared to wild type in mouse solid tumor models. NR4ATKO CAR-T cells exhibited
better performance on inducing tumor regression and prolonged the survival of tumor-bearing mice
compared to those with WT CAR-TILs and single-gene knockouts. Briefly, these results suggest that the
efficacy of existing immunotherapies on solid tumors can be improved by additional targeting of NFAT
and NR4A (Figure 2), whose expressions are also correlated with tumor initiation and progression in
PDAC [165]
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4.2. 4-1BB

4-1BB (TNFRSF9 or CD137) may be considered one of the immune-modulating molecules with
contradictory tumor activity. Kim et al. showed that among CD8+ TILs, extracted from hepatocellular
carcinoma (HCC) patients, 4-1BB+ PD-1high Tc TILs exhibit significantly higher levels of tumor
reactivity than 4-1BB− PD-1high Tc [166]. Choi et al. reported that antitumor immunity is enhanced
in 4-1BBDKO mice as a result of the increase in NK cells due to the shift of the dominant type of
immune cells from the innate NK cell to the adaptive Tc via 4-1BB signaling [167]. It is known
that constitutive activation of oncogenic KrasG12D, which approximately 90% of pancreatic cancer
incidences exhibit, upregulates 4-1BB in tumor cells through MAPK and NF-κB signaling [168,169].
Therefore, many clinical CAR-T cell trials in pancreatic cancer are also using the 4-1BB receptor,
targeting mesothelin, MUC1, CD19, CD133 (Table 1). However, the effect of the drifting immune cell
types and the potential consequences on T-cell exhaustion should be kept in mind.

Table 1. Clinical trials of potential immunotherapeutic targeting main or mediatory immunosuppressive
molecules for PDAC treatment.

Immune Target Category Immune Target Clinical Trial Number Medication Name Results and Comments

Inhibitory Receptor and
Ligands

PD-1

NCT02009449
NCT02526017
NCT02423954
NCT02451982
NCT03161379
NCT03214250
NCT03190265

Nivolumab(BMS-936558/MDX-
1106/ONO-4538)

No objective response with
single PD-1 blockade, partly
effective with patients of
MSI-high tumors (FDA
approved). Combinations
with other immunotherapies
such as GVAX vaccine,
chemotherapies or
radiotherapies are still under
investigation.

NCT02648282
NCT02362048
NCT02305186
NCT02546531
NCT02432963
NCT01174121
NCT03331562

Pembrolizumab(MK-3475/SCH
900475)

NCT01313416
NCT01386502 Pidilizumab (CT-011)

PD-L1

NCT02669914
NCT02527434
NCT02586987
NCT02558894
NCT02583477
NCT02301130
NCT02639026

Durvalumab (MEDI4736)

CTLA-4

NCT01473940
NCT01896869
NCT03190265
NCT02527434
NCT02558894
NCT02301130
NCT02639026

Ipilimumab
(BMS-734016/MDX-010)

Tremelimumab
(CP-675/CP-675,206)

Effector Receptor
CD40 NCT02588443 RO7009789 (anti-CD40) May benefit from

combination with
checkpoint inhibitors

CD137 NCT02451982 Urelumab

CD20 NCT00001805 Rituximab

TME Targeting Agents

IDO NCT02077881 Indoximod Studies are still in Phase 1
and Phase 2. No objective
result used mostly with
combination.

BTK NCT02403271 Ibrutinib

CCR2/CCR5 NCT03767582 CCR2/CCR5 dual antagonist
(BMS-813160)

TGF-ß NCT00844064 AP 12009 (trabedersen)

Therapeutic Vaccines

GM-CSF

NCT01417000
NCT02004262
NCT00084383
NCT00305760
NCT00836407

GVAX No objective result with
single vaccine, combination
with checkpoint inhibitors
improves survival.
Phase 1 study of ipilimumab
with GVAX vaccination
showed prolonged survival
and improved anti-cancer
T-cell response

All immune cells
NCT01072981
NCT00569387
NCT00255827

Algenpantucel-L

Telomerase peptide NCT00425360
NCT01342224 GV1001

MUC1 NCT00008099 MUC1antigen/SB AS-2

WT1 NCT03114631 MUC-1/WT-1peptide
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4.3. STAT1

Signal Transducer and Activator of Transcription 1 (STAT1) is a transcription factor involved in
the JAK-STAT signaling pathway and defined as a prognostic factor in pancreatic cancer, is inversely
associated with metastasis and tumor differentiation [170,171]. Furthermore, STAT1 was found to
be an inhibitor of Forkhead Box protein M1 (FoxM1) that acts as an oncogene via NF-κB signaling
in pancreatic cancer [172]. Ryan et al. also reported its role for T-cell function, who indicated that
complete deficiency of STAT1 in vivo showed poor expansion CD4+ and Tc expansion and decreased
TNF-α production, therefore leading to increased tumor growth [173].

5. Metabolic Changes in T-Cell Exhaustion

Metabolic changes in T cells can be considered as a response to the increasing demand for T
cell activation. However, it is also crucial for the differentiation and appropriate function of T cells,
highly dependent on metabolites from energy metabolism [174]. Naive and quiescent cells demand
mostly ATP-generating processes, which are met by oxidative phosphorylation [175].

The metabolic switch from oxidative phosphorylation to aerobic glycolysis takes place T cells
for activation and cancer cells. Effector cytokine function of activated T cells is highly diminished
if aerobic glycolysis is inhibited [176]. Glucose transport is limited in early exhaustion due to the
downregulation of GLUT1 and the excessive consumption of glucose by tumor cells (Figure 2) [175,176].
Mitochondria of exhausted T cells in infections are more abundant but dysregulated, which leads to a
decrease in mitochondrial function and an increase in the production of reactive oxygen species (ROS)
(Figure 2) [177].

In contrast to the metabolic changes seen in the exhausted cells in infections, both mitochondrial
mass, and function, diminished in TILs [178]. Tex cells during infection respond to both genetic
deletions of PD-1 or blockade of the PD-L1. However, mitochondrial biomass in TILs does not respond
to the blockade of PD-1, although blockade results in tumor regression [177,178].

Hypoxia is a condition that plays a well-known role in tumor progression and tumor survival
in solid tumors [179]. The tumor suppressor and the negative regulator of HIF, von Hippel–Lindau
(Vhl) protein, and hypoxia-inducible factor (HIFα) partly control Tc activity as a response to hypoxia.
It appears that enhanced HIFα activity mediating the transcriptional profile and the differentiation of
Tc cells play an important role in infection and tumor clearance [180].

6. Immunotherapy in Pancreatic Ductal Adenocarcinoma-Current Status

In pancreatic cancer, immunotherapy has not yet shown significant clinical activity and is
mostly inefficient as monotherapy due to low immunogenicity and desmoplasia [181]. The abundant
stroma of pancreatic cancer causes a hypoxic microenvironment, further leading to the recruitment
of immunosuppressive cells and inhibiting antitumor immunity [21]. Tc is essential for successful
tumor immune response, and tumor-specific T cell infiltration is associated with more prolonged
survival in patients with tumor-associated antigen-specific Tc responses than in patients without
it. However, PDAC is defined as immunologically cold, which means it has a low degree of
inflammation since the fibrotic barrier seems to impede the T-cell recruitment [3,54,69,182]. Furthermore,
even if cell T cells arrive in the tumor, T-cell exhaustion, and the immunosuppressive TME leads to
unsuccessful immune [183]. Although the tumor microenvironment in pancreatic cancer is highly
immunosuppressive, recent advances in immune-based therapies hold promise for treating this
deadly disease.

Although checkpoint inhibitors (CPI) are commonly used in many other cancer types such
as melanoma, non-small cell lung cancer, ovarian cancer, renal cell cancer [184], there have been
no objective responses as either single agent or combination of CPIs in patients with pancreatic
cancer (Figure 2) [185]. CPIs target negative immune checkpoint molecules, including PD-1, PD-L1,
and CTLA-4, which causes an increased immune response and decreased tumor progression [186].
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There are several reasons for the failure of immune checkpoint inhibitors in PDAC. Most PDAC display
low levels of PD-1+ T cell infiltration and a small number of neoepitopes, which can be considered
as the reason for the reduced efficacy of checkpoint inhibitors [187]. In a rare subset of patients with
microsatellite instability-high (MSI-high) tumors, and thus a high number of neoepitopes, patients can
respond to PD-1 blockade [188]. Blockade of PD-1/PD-L1 and CTLA-4 is effective up to 50% of the
patients with immune sensitive cancers such as melanoma, non-small cell lung cancer, squamous cell
carcinoma of head and neck cancers, renal cell carcinoma, bladder cancer, and Hodgkin’s lymphoma
according to the FDA’s objective response criteria [189]. However, PDAC turns out to be one of the
least responsive tumors to single-agent treatments targeting PD-1/PD-L1 and CTLA-4 signaling [186].
Given the results of anti-PD-1 treatment of progressive metastatic carcinoma with mismatch repair
deficiency, which promotes somatic mutations and possibly mutated neoantigens, immune checkpoint
inhibition modalities seem promising to overcome T-cell exhaustion in PDAC patients with mismatch
repair deficiency [190]. Due to the limited effect of a PD-1 inhibitor in pancreatic cancer, it is shown
that CXC chemokine receptor 4 (CXCR4) blockade promotes T cell infiltration with its synergistic effect
with PD-1 inhibitors in mouse models [67,191]. Bockorny et al. also showed that combined CXCR4
and PD-1 inhibitors promoted an increase in T-cell infiltration and a decrease in MDSCs in pancreatic
cancer patients [192].

Although PDAC is considered as unresponsive to checkpoint inhibitors, there are promising results
with a combination of a T-cell inducing vaccine and a granulocyte macrophage colony-stimulating
factor secreting PDA vaccine (GVAX) CTLA-4 and PD1/PDL1 blockade. With CTLA-4 inhibitor
ipilimumab and GVAX, metastatic PDAC patients overall survival improved [193]. Despite the small
sample size of the study, patients benefited from this combination treatment due to enhanced T-cell
responses seem to benefit more likely to, implying T-cell induction and maintenance of T-cell response
could be a critical step for checkpoint inhibitors. The same group investigated PD1/PDL-1 blockade
combined with GVAX treatment in liver metastasis of the PDAC mouse model. Notably, they showed
GVAX significantly induced PDL-1 expression on tumor and it improved the effector function of CD8+

T cells and IFN-γ production, resulting in improved survival compared to monotherapy regimens
of both [194]. Due to the exhaustion of antitumor T cells, the number of T cells interacting with
tumor antigens is diminished, limiting the efficacy of PD-1 blockade [195]. In order to overcome
T-cell exhaustion, intratumoral in situ injection using dual CD40-TLR4 stimulation was applied and
exhausted Tc cells were eliminated in murine models with bilateral tumor approach to assess its efficacy
both on the treated tumor and on the distant tumor which improved tumor control with the addition
of PD-1 inhibitor [196]. Activation of the CD40 receptors by tumor cells is an important step for T-cell
immunity. Thus, it is worthy of mentioning that stimulating antigen-presenting cells is also a way to
boost the immune responses in PDAC. CD40 agonist mAb is one of the possible targets, which has been
shown to have antitumor activity in solid malignancies. [197,198]. In the case of PDAC, the clinical trial
of CD40 agonist monoclonal antibody (mAb) combined with gemcitabine gave hopeful results [199].
Also, the phase 1 study CD40 agonistic mAb plus gemcitabine and nab-paclitaxel with or without
nivolumab showed significant antitumor activity in PDAC patients [200]. Although these studies
gave promising results, their toxicity such as cytokine release syndrome, vascular and hematologic
complications, and liver toxicity should be kept in mind.

Inhibitors of TGF-β are shown effective in preclinical models [201]. Besides, a combination
of TGF-β inhibitors with gemcitabine improved overall survival compared to gemcitabine alone in
patients with unresectable pancreatic cancer [202].

Multiple other immune molecules can inhibit T cell responses in cancer, including TIM-3, TIGIT,
and LAG-3, and these molecules should be investigated in the design of further immunotherapy
modalities. Another critical issue in immunotherapy is the presence of immunogenic tumor antigens
to drive a cancer-specific T-cell response. Multiple antigens have been studied previously in this
context, such as telomerase, MUC1, enolase, WT1, Kras, and mesothelin [203,204]. These antigens
can be potential targets for increasing the immunity of the tumor, but their clinical utility yet needs



Cancers 2020, 12, 2274 16 of 27

to be shown. Although current clinical trials show that PDAC is an immunologic outlier, with a
better understanding of TME of PDAC and T-cell exhaustion, new solutions for patients are likely to
be underway. Future combination therapies, including CPI, vaccines, and those that work against
exhausted T cells, which is a significant obstacle in immunotherapy, are promising strategies. We listed
all the recently used immunotherapy approaches in pancreatic cancer in Table 1.

7. Conclusions

Here, we reviewed the recent and most relevant studies on the immunosuppressive tumor
microenvironment-induced signaling pathways, transcription factors, and epigenetic programming
driving T-cell exhaustion, with a focus on pancreatic ductal adenocarcinoma. To develop new treatment
modalities, all molecular factors mentioned in the review should be studied as T-cell exhaustion
remains one of the main resistance factors against immunotherapy in PDAC. Since many factors lead
to T-cell dysfunction, it is not easy to find a single responsible factor and to see a miracle by fixing it.
It is also controversial if the exhausted state of the T cell can be reversed or not. While some studies say
that the phenomenon is pharmacologically reversible, some say that there are two states of exhausted
T cells, and reversal of the utterly exhausted cell state is impossible [36,143,181,205].

Recent studies showed that upon a series of genetic and epigenetic alterations in the chromatin
of T cells, the genes on the NFAT–TOX axis are activated and lead to the upregulation of IRs, loss of
effector function, eventually resulting in T-cell exhaustion in chronic infection and cancer.

Besides, some studies demonstrated that the complete ablation of these regulatory genes also
creates dysfunctional, nonsustainable T cells. Thus, fine-tuning of T-cell activity by both inhibiting
exhaustion driving molecules and in parallel targeting molecules that enhance effector function may
be more successful in improving the efficacy of existing immunotherapy regimens. Furthermore,
inefficient and unsuccessful clinical outcomes of immunotherapies for classical checkpoints PD-1
and CTLA-4 would be reversed or enhanced if combined with second-generation checkpoint targets,
TIM-3, TIGIT, LAG-3, mostly expressed on exhausted phenotype. Therefore, these findings add to
our understanding T-cells’ differentiation in the tumor microenvironment and, eventually, be used to
develop new strategies to treat immune-outlier tumors like pancreatic cancer. It is generally accepted
that the induction of exhaustion in T cells in chronic infection and cancer is an evolution of the immune
cells. It serves as a physiologic mechanism to prevent immune overstimulation and survival of the T
cells in chronic antigen encounters [141,144]. Therefore, one should be very careful when manipulating
the exhausted T-cell subset. They can cause immunopathogenesis, massive edema, and autoimmune
diseases if T cells are unleashed for a long time. Thus, exploiting or reversing T-cell exhaustion can be
a double-edged sword in future efforts of targeting pancreatic cancer.
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