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Abstract

In various organisms, sequencing of selectively bred lines at apparent selection limits has

demonstrated that genetic variation can remain at many loci, implying that evolution at the

genetic level may continue even if the population mean phenotype remains constant. We

compared selection signatures at generations 22 and 61 of the “High Runner” mouse experi-

ment, which includes 4 replicate lines bred for voluntary wheel-running behavior (HR) and 4

non-selected control (C) lines. Previously, we reported multiple regions of differentiation

between the HR and C lines, based on whole-genome sequence data for 10 mice from each

line at generation 61, which was >31 generations after selection limits had been reached in

all HR lines. Here, we analyzed pooled sequencing data from ~20 mice for each of the 8

lines at generation 22, around when HR lines were reaching limits. Differentiation analyses

of allele frequencies at ~4.4 million SNP loci used the regularized T-test and detected 258

differentiated regions with FDR = 0.01. Comparable analyses involving pooling generation

61 individual mouse genotypes into allele frequencies by line produced only 11 such

regions, with almost no overlap among the largest and most statistically significant peaks

between the two generations. These results implicate a sort of “genetic churn” that contin-

ues at loci relevant for running. Simulations indicate that loss of statistical power due to ran-

dom genetic drift and sampling error are insufficient to explain the differences in selection

signatures. The 13 differentiated regions at generation 22 with strict culling measures

include 79 genes related to a wide variety of functions. Gene ontology identified pathways

related to olfaction and vomeronasal pathways as being overrepresented, consistent with

generation 61 analyses, despite those specific regions differing between generations.

Genes Dspp and Rbm24 are also identified as potentially explaining known bone and skele-

tal muscle differences, respectively, between the linetypes.
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Introduction

Although evolution can result in organisms with spectacular capabilities or able to survive in

exceptionally inhospitable environments, all adaptations are bound within certain limits.

These limits are commonly observed in laboratory and agricultural selection experiments [1–

5]. Among various possible causes of selection limits [2, 6, 7], the simplest explanation is the

loss of genetic variation, such that narrow-sense heritability declines to zero (e.g., see [8]).

However, selection experiments have frequently found that genetic variation remains after

reaching a selection limit [1, 3, 5, 9–13]. Even for alleles favored by selection, fixation is far

from guaranteed [4, 12–14].

One selection experiment that has continued selection long after reaching a limit is the

High Runner (HR) mouse experiment, which started in 1993 with the purchase of 224 outbred

ICR mice from Harlan Sprague Dawley [15]. These were randomly bred for two generations,

then split into ten breeding pairs to found each of eight closed lines. Four of these lines were

designated to serve as non-selected control lines, while the other four were selected based on

voluntary wheel running. In selected lines, all mice are given access to wheels for 6 days and

the male and female of each family with the highest running on days 5 and 6 would be used as

breeders (no sib-mating). After about 22 generations of selection, three of the four HR lines

(with the fourth line following suit a few generations later) had plateaued in their running at

approximately 2.5 to 3 times as many revolutions as the controls [3]. Recently, the experiment

has reached its 100th generation since selection began and, with exception of some generations

when the experiment moved from Wisconsin to California (generations 32 to 35) and during

Covid-19 lockdowns (generations 91 to 98), selection has continued nearly uninterrupted in

the interim. Whether selection interruption following the move to California resulted in statis-

tically significant changes to running behavior has not yet been analyzed.

Numerous physiological and morphological differences between the HR and control lines

have been documented [16–20]. These include traits associated with motivation to run, such

as changes in dopamine [21, 22], serotonin [23], and endocannabinoid signaling [24], as well

as changes in brain size and structure [25]. Additionally, changes associated with ability to run

have been found, including endurance capacity [26], maximal aerobic capacity (VO2Max) [27–

31], heart size [28, 32, 33], skeletal muscle physiology [34–37], and bone morphology [38–46].

Previously, whole-genome differentiation analyses using individual mouse data from 10

males from each of the eight lines at generation 61 identified at least 13 genomic regions differ-

entiated between the control and HR lines [13, 47]. Within these regions were genes associated

with development of the brain, heart, bones, and limbs, in addition to reward pathways, and

even the vomeronasal system (see also [48]). Dropping individual lines from analyses revealed

new potential signatures of selection and demonstrated that the HR lines have evolved in dif-

ferent ways at the genomic level (“multiple solutions” [49]) that increase wheel-running behav-

ior [47]. Despite being ~30–35 generations past the selection limit, a great deal of genetic

diversity remained in all 8 lines including many regions identified as differentiated between

the HR lines and controls.

With the selection limit achieved near generation 22, one might expect many if not most

biologically relevant SNPs to already be differentiated by that generation. Thus, with respect to

the ability to detect selection signatures, little advantage would be gained from allowing ~30–

35 generations to pass before testing for allelic differentiation between the HR and control

lines. Furthermore, simulations performed by Baldwin-Brown et al. [50] demonstrate that

increasing the number of generations could reduce power to detect some loci under selection,

which they attributed to noise created by random genetic drift. Reasonably, one might expect

that drift over enough generations may cause control lines to diverge from each other in allele
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frequencies, such that selection signatures are obscured in statistical tests that compare repli-

cate sets of selected and control lines. For example, if some control lines become fixed for one

allele and the remaining control lines become fixed for another, then, even if all HR lines were

fixed for the same allele favored by selection, statistically significant differentiation would be

difficult to detect. Therefore, analyses of a generation close to when a selection limit is first

reached would be optimal for tests of genetic differentiation.

In the present study, we analyze pooled sequence data from each of the four HR lines and

four control lines at generation 22. Although these analyses identify many regions containing

genes associated with systems known to be phenotypically differentiated between the HR and

control linetypes, they largely differ from those previously identified with the generation 61

individual mouse sequence data [13]. Furthermore, the number of differentiated regions

detected at generation 22 are more than 20-fold greater than those detected with generation 61

data (treated as pooled data).

We first discuss possible methodological causes of these differences (e.g., pooled vs individ-

ual mouse data) and find them lacking. We therefore develop a simple simulation model, with

leptokurtic distribution of locus effect sizes, to test the possibility that a hypothetical physiolog-

ical constraint on wheel running could contribute to the differences between generations 22

and 61 selection signatures. Ignoring locus effect size, results demonstrate that such constraints

can contribute to a reduction in power and increased variability in the detected response to

selection in generations after the selection limit. However, the magnitude of these effects

appears insufficient to explain the differences observed between generations 22 and 61 in the

real data. In addition, effect size was an important determinant of the ability to detect selection

signatures in the simulations, including a more than 2-fold increase in power to detect loci

with large effect size at generation 22 as compared to generation 61. Thus, with strict culling

procedures, we suspect that many of the selection signatures detected at both generations are

likely to represent loci with relatively large effects on wheel running. The regions detected at

generation 22 include genes related to olfactory/vomeronasal systems, which are also identified

at generation 61 [13, 47, 48].

Materials and methods

High runner mouse model

As described previously [3, 15], 112 males and 112 females of the outbred Hsd:ICR strain were

purchased from Harlan Sprague Dawley in 1993 and designated as generation -2. Mice would

be randomly bred for 2 generations (-2 and -1) with 2–3 generation -1 mice from each family

randomly chosen to contribute to 1 of 8 different closed lines. Four of these lines were ran-

domly picked to be “High Runner” (HR) lines, in which mice would be selected for breeding

based on voluntary wheel running. The remaining 4 lines were used as Control (C) lines, with-

out any selection. Generation 0 was the first generation where HR lines were paired based on

running levels (10 males and 10 females for each line) with generation 1 the first product of

selection.

Wheel running measurements were collected by giving mice at approximately 6–8 weeks of

age, access to wheels for six days. The amount of running (total revolutions) on days 5 and 6

was used as the selection criterion. Both days 5 and 6 are used for repeatability in running

behavior and robustness against bad data for a single day [3]. For the HR lines, the highest-

running male and female from within each of 10 families were chosen as breeders (within-fam-

ily selection). For the non-selected C lines, one male and one female from each of 10 families

were chosen as breeders, independent of wheel running measurements. Sib-mating was disal-

lowed in all lines [15].
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Genome sequencing and allele frequency determination

Roughly 10 male and 10 female mice were taken from each line at generation 22 [20]. Mice

were decapitated without anesthesia because blood was being taken for a study of hormone

levels (corticosterone) that can respond rapidly to additional handling or anesthesia. Subse-

quently, their DNA was extracted from tail tips and then pooled for determination of allele fre-

quency for each line. This pooled DNA was sequenced with paired end pooled sequencing

with Illumina HiSeq 2500 sequences were trimmed and aligned to the GRCm38/mm10 mouse

genome assembly. Generation 22 used trimmomatic v0.39 for trimming, BWA v0.7.17 for

alignment, Samtools v1.14 for sorting and indexing, picard v2.26.11 for marking duplicates,

and GATK v4.1.8.1 for calling SNPs. SNPs were filtered to keep those with read quality (“RQ”)

� 20, DP� 10, were missing either quality score, or missing the allele frequency all together,

or had MAF > 0.0126. Allele frequencies (“AF”) were determined for generation 22 by taking

the read depth of the alternate nucleotide allele (i.e., allele differing from the GRCm38/mm10

alignment) and dividing by the read depth for the locus. After all quality control methods were

implemented, 4,446,523 loci remained for generation 22.

The generation 61 data were taken from Hillis et al. [13]. 80 male mice (10 from each line)

were subject to whole genome sequencing and reads were trimmed and aligned to the

GRCm38/mm10 mouse genome assembly as described in Didion et al. [51]. This generated an

average read depth of 12X per mouse. SNPs were filtered to keep those with genotype quality

("GQ") > 5, read depth (“DP”) > 3, minimum allele frequency (“MAF”) > 0.0126 for all sam-

ples, and Mapping Quality ("MQ") > 30. One of the 80 mice was excluded due to likely con-

tamination [as in 52], leaving 79 for the following analyses. SNPs not found to be present in at

least two of the 79 mice were also removed from analysis. After all quality control methods

were implemented, 5,932,148 loci remained for analyses. To allow comparison with the pooled

sequencing data from generation 22, we calculated allele frequencies as the number of alterna-

tive alleles divided by 2 times the number of mice (i.e., 20 or 18 for HR3).

Statistical analyses

For generations 22 and 61 we used an arcsine-squared transformation [53] of the AF. Analyses

were conducted on both generations using a traditional T-test, regularized T-test (RegT) [50,

see also 54], and a variant of the regularized T-test which uses a sliding window to calculate �v
(WRT test) (S1 File). The regularized T-test was based on a Bayesian method meant to mini-

mize the type-I errors caused by sampling error with small sample sizes [50, 54], such as the 8

total lines in the HR mouse selection experiment. We performed these tests and determined

the permutation-based false discovery rate (FDR) for each method (see below). For compari-

son, we also performed the RegT and WRT tests on loci found in both generation 22 and 61

(from pooling individual mouse genotypes) data sets along with the FDR. Since standard T-

tests do not require whole genome or region variances of other loci, the p-values of loci shared

between the two generations could simply be extracted from the complete original analyses.

Permutation-based false discovery rate

To determine relative power of generation 22 allele frequencies with arcsine-square transfor-

mation using T-test, regularized T-test, and WRT test, we attempted to calculate a critical

threshold by estimating the FDR of 10% [55, 56]. However, after calculating p-values for com-

plete permutations of the different lines within linetype to better understand the null distribu-

tion, we concluded that this estimated FDR was underestimating the true false discovery rate.

Therefore, using these same permutations, we calculated the FDR directly.
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Direct calculations of FDR were performed by calculating FDR for each locus of the unper-

muted data whose p-value was below 0.01 in accordance with the equation:

FDR ¼
n False Positives

n rejected Null Hypotheses

This was implemented for each locus with:

FDR ¼
n permuted loci significant at p

35

n unpermuted loci significant at p

Loci with nominal p-value < 0.05 were ordered by FDR score, the p-value was identified

for the locus with the largest FDR below 0.01, and any p-values less than or equal to the p-

value for this locus was treated as significant. The SNPs with FDR = 0.01 were then further

grouped into “significant regions” by grouping any loci within 1mbp of another and separating

groups whose closest SNPs are further than 1mbp.

Divergence over time

To test for a difference in the number of loci showing a significant change in allele frequency

between the HR and C lines from generations 22 to 61, we first conducted a paired T-test for

the 4 C lines and separately for the 4 HR lines. These tests were based on eight data points for

each linetype, i.e., the mean allele frequency for each line at a given locus at generation 22 and

61. The T-score for the C T-test was then subtracted from the T-score for the HR T-test, and

the absolute value was taken. This was repeated for each locus, producing values for approxi-

mately 2 million loci (excluding where either the C or HR T-test failed for numerical reasons).

These analyses were then repeated with all 35 permutations (as described above) to estimate

the null distribution of the score based on ~2,000,000 * 35 = ~75,000,000 values. These scores

were ordered to identify the 5th percentile threshold for comparison with the distribution of

the unpermuted results.

“Strict” culling for biological and AF change analyses

Rather than attempt to focus on the genes of more than 100 regions for each of the different

statistical tests, analyses of biological significance and comparisons of change in allele frequen-

cies between generations 22 and 61 were done using a subset of the regions identified by FDR.

WRT and regularized T-test first culled by removing regions containing only one significant

locus, then culled such that only regions containing at least 20 significant loci or the lowest p-

value among loci in the region was below 1.00E-04. Regions associated with the T-tests were

culled in a similar manner as the WRT and RegT test, except the p-value cutoff used was

1.00E-06 due to naturally lower p-values. These culling methods should also serve to reduce

the influence of sampling error, as it would be increasingly unlikely for sampling error to

simultaneously underestimate among-line variance across multiple linked SNPs and lines. We

will refer to these additional culling methods below as “strict” culling.

Comparison of selection signatures in generations 22 and 61

Changes in allele frequencies from generation 22 to 61 were analyzed for each region identified

by strict culling for generations 22 and 61. For regions significant at generation 22, each region

and its included SNPs with nominal p<0.05 at generation 22 were matched with SNPs at gen-

eration 61. The allele frequencies of these SNPs were averaged for each line and generation

and line graphs created (one for each line) with generation 22 AF on the left and generation 61
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AF on the right. This was then repeated for regions significant at generation 61, except each

region and its included SNPs with nominal p<0.05 at generation 61 were matched with SNPs

at generation 22.

Simulations to compare presumptive statistical power across generations

The available data from the two generations differ in multiple ways that might affect cross-gen-

eration comparisons of selection signatures. Each generation, each line is reduced to ~20 indi-

viduals when ~10 breeding pairs are formed. An ideal "sample" from a given generation would

include all 20 of those breeding individuals. Instead, our sample from generation 22 was of

~10 males and 10 females per line that were sampled at random at the time of weaning (i.e.,

they were not the 20 breeding parents). In contrast, the mice from generation 61 were a semi-

random sample of 10 males from each line (except nine from HR3 and one female that was

unintentionally used from another line) [13].

For a pooled DNA sample, as for generation 22, a further ideal condition is for the sample

of DNA from each mouse to be of equal volume and concentration through the extraction and

pipetting steps prior to pooling. This would then result in each mouse’s alleles being repre-

sented in equal quantities in the pooled sequencing sample.

The next source of error is read depth, which is effectively a random sampling of alleles

from the pooled sample. Our generation 22 samples were read at an average depth of 24X.

Thus, the frequency of alternative nucleotide alleles for a given SNP locus was calculated by

counting the number of alternative alleles, which was taken as anything other than the refer-

ence. Thus, not all of the 40 alleles (as one of two possibilities) contributed by the 20 mice

could have been identified with a read depth of 24X, which acts as 24 samples taken with

replacement.

The generation 61 data are from individual sequencing of 10 mice per line at an average

read depth of 12X, with those results then used to predict the genotype for each SNP and

mouse [13]. This should allow for the representation of nearly all alleles (N = 2 alleles x 10

mice). Originally, those data were analyzed as such via mixed models to detect selection signa-

tures [13]. Here, to allow comparison with the pooled sequencing data from generation 22, we

calculated allele frequencies as the number of alternative alleles divided by 2 times the number

of mice (i.e., 20 or 18 for HR3), which should incorporate 19–20 unique alleles in equal pro-

portion. Given that the data available from the two generations differ in multiple ways, we

used simulations in an attempt to assess how this might affect our results.

For generation 22, simulations to elucidate possible sampling errors were performed such

that alleles for 20 mice were sampled using a random binomial distribution assuming popula-

tion allele frequencies of (0.05, 0.10, 0.15, . . .,0.90, and 0.95). Then an allele depth was ran-

domly sampled from the actual quality data for the SNPs used in the generation 22 analyses

and alleles were sampled from these simulated 20 mice (with replace) equal to this read depth.

The allele frequency was then calculated as the number of alternative alleles (1) divided by the

total read depth. This generated a distribution of allele frequencies given a particular starting

AF for the population and was repeated 100,000 times for each starting population AF.

For generation 61, simulations were performed such that alleles for 10 mice were sampled

using a random binomial distribution assuming population allele frequencies of (0.05, 0.10,

0.15, . . .,0.90, and 0.95). Then for each simulated mouse’s genotype, a genotype quality was

randomly sampled from the actual quality data for the SNPs used in the generation 61 analyses.

If the simulated genotype for the mouse was heterozygous, then the genotype quality would be

used to generate a 0 or 1 with the probability of a 1 equaling that of the probability of a geno-

typing error. If a 1 was generated (thus an error occurred) the second allele for the mouse was
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replace with a copy of the first allele of the mouse. The allele frequency was then calculated as

the number of alternative alleles (i.e., 1) for all ten mice divided by the total alleles (i.e., 20).

This generated a distribution of allele frequencies given a particular starting AF for the popula-

tion and was repeated 100,000 times for each starting population AF.

Power analyses were then done by sampling four AF values from the simulated AF values

from an actual population AF of 0.4 for one linetype. Likewise, four AF values were sampled

from the simulated AF values from an actual population AF of 0.6 for the other linetype. Sampled

allele frequencies were transformed using an arcsine-squared transformation. A T-test (assuming

unequal variance) was then conducted comparing these 8 sampled AF values. Note that this

could not be done for RegT and WRT tests because it would require simulations of regional or

genome-wide variance structure. These sampling and T-tests were repeated 10,000 times.

Simulations comparing power with and without a biological constraint

We used simulations to begin to address whether a biological constraint on a trait under selec-

tion (e.g., wheel running) might affect (1) the ability to detect selection signatures at genera-

tions before (e.g., generation 22) versus long after (e.g., generation 61) selection limits were

reached, (2) the consistency of those signatures across generations, and (3) the rate at which

loci with different allelic effect sizes respond to selection. Our rationale for using a constraint

model is explained in the Discussion. As a heuristic, some of the parameters in these simula-

tions were chosen to approximate values observed in the selection experiment and help build a

model of architecture for wheel running in the HR and control mice [57].

Running levels were calculated based on the general equation:

y ¼ mþ vg þ ve

Where y is equal to the phenotype (wheel revolutions/day) of an individual mouse; μ is the

"base" mean number of revolutions (held constant at the starting value set at generation 0); vg

is the variance contributed by genetic variation; and ve is the variance contributed by environ-

mental effects.

As a regression model, this equation is:

y ¼ mþ b1X1 þ b2X2

where the genetic variance is represented by β1X1 and the environmental variance is repre-

sented by β1X2. X1 represents the summed effect on wheel running of all alleles carried by the

individual, where, to simulate a leptokurtic distribution [58–60], these alleles are coded as hav-

ing variable allelic affects (specifically, ±0.4, ±0.8, ±1.6, ±3.2,. . . ±204.8) at frequencies

inversely proportional to their effect size (specifically, 720 loci with effect ±0.4, 480 loci with

effect ±0.8, . . . 8 loci with effect ±204.8) for a total of 2,096 loci, which approximates the num-

ber of haplotype blocks observed across all eight lines [13]. X2 provides the random element of

the environmental variance and is determined by randomly sampling from a normal distribu-

tion with mean = 0 and SD = 1.

The equation we applied for these simulations is:

y ¼ 4; 570þ 1:3X1 þ 2; 100X2

The values for β1 (1.3), β2 (2,100) and for the number of loci were determined in conjunc-

tion with one another to approximate realistic (in no particular order) (1) heritability of wheel

running at the base generation being about 0.32 [3], (2) within-line coefficients of variation as

being about 0.57 [15], and (3) realistic response to selection in the HR lines (i.e., achieving

~16,000 revolutions around generation 22) [3].
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However, this equation does not adequately simulate seasonal variation see Appendix S5 in

[3], so we applied an additional modifier:

y ¼ S∗ð4; 570þ 1:3X1 þ 2; 100X2Þ

S is a constant that alternates cycles between 0.769 (summer), 1 (winter and fall), and 1.3

(winter). As generation time for the first 61 generations was consistently around 3 months,

these constants can alternate with each generation. The mean of 4,570 (revolutions/day) was

picked to approximate the empirically determined starting running levels at generation 0 [15].

Any running level calculated as below 100 was set to 100, which is approximately the lowest

amount of running ever observed. The maximum wheel-running for unconstrained simula-

tions was 50,000 revolutions, which is nearly twice as high as has ever been observed in actual

measurements from the selection experiment [3, 61]. In practice, the highest running level

produced by the unconstrained simulations was 38,875 (of 24,400 total individuals simulated

over 61 generations for the HR lines).

For the starting population of any given line, two alleles were first assigned to each of the

2,096 independently segregating starting loci for 20 mice (based on the actual selection proce-

dures: [15]) using a random binomial distribution with p = 0.5. For control lines, mice were

paired, and alleles sampled from each of the pair to produce two male and two female offspring

(to match the number of mice that are typically retained and wheel-tested in the selection

experiment). The first of each sex for each family was then chosen to contribute to the next

generation, which is functionally equivalent to the selection experiment, where breeders are

chosen a random within family and sex for control lines. For HR lines, alleles were sampled

from the parents for each of five males and five females (typical litter size is 10). Running dis-

tances were then calculated for all offspring, and the male and female with the highest running

levels within each family were selected to breed for the subsequent generation (again, based on

the actual selection procedure, which uses within-family selection). For both linetypes, siblings

were barred from pairing (following the selection experiment). Simulations were run for 61

generations and alleles for all breeding pairs were saved at generation 0 and every 5 genera-

tions through 60, as well as generations 22 and 61. This was then repeated for 4 control lines

and 4 HR lines.

We modeled the constraint on wheel running as a trait that itself can evolve. To obtain a real-

istic value for the constraint, we applied the same principles as for the wheel-running equation:

C ¼ S∗ð10; 000þ 1:0XC1 þ 1; 750XC2Þ

C is the constraint to be applied to the mouse’s wheel running. S is the same seasonal multi-

plier used in the wheel-running equation, without which, higher running levels in winter

become truncated. XC1 represents the genetic component of the constraint determined by (arbi-

trarily) 100 loci with effect sizes of ±1 (N = 48), ±4 (N = 24), ±11 (N = 12), ±36 (N = 8), ±101

(N = 5), and ±306 (N = 3). XC1 represents the environmental component, determined by sam-

pling from a normal distribution with mean = 0 and SD = 1 (similarly to wheel running). These

values result in a narrow-sense heritability of ~0.2. Despite targeting a wheel-running constraint

of about 16,000 revolutions in the HR lines, the base constraint value is set to 10,000 because the

alleles that increase constraint are favored by selection in the HR lines. Thus, a lower base value

is needed for HR lines to stop responding to selection at about 16,000 revolutions. For the con-

strained simulation, if a mouse ran more than its determined constraint then its revolutions

were treated as equal to the constraint itself before picking the breeders for the next generation.

These simulations were repeated 100 times (with 4 HR lines and 4 control lines in each sim-

ulation) assuming no constraint and 100 times with the constraint (see S2 File, for parameters).

PLOS ONE Evolution following reaching a selection limit

PLOS ONE | https://doi.org/10.1371/journal.pone.0306397 August 1, 2024 8 / 32

https://doi.org/10.1371/journal.pone.0306397


T-tests assuming unequal variance between the 4 control lines and the 4 HR lines were per-

formed at each of these “saved” generations (0, 5, 10, etc.) for the allele frequencies at each

locus, with an arcsine-squared transform [53]. Power was then calculated for each simulation

at each saved generation by dividing the number of loci with p� 0.05 by the total number of

loci (N = 2,096). Power was also calculated separating loci by effect size (see below).

Standardized selection differentials were calculated following Careau et al. [3], by subtracting

from the mean running for each sex and family the running level of the bred individual from that

litter and dividing the difference by the standard deviation of the sex for that litter. Relative power

under the constrained and unconstrained models was calculated using unpaired T-tests (unequal

variance) on the previously described power calculations for each simulation and for each saved

generation. Relative power across generations was also calculated using unpaired T-tests (unequal

variance), separately for constrained and unconstrained simulations. Relative consistency in

detected selection signatures was calculated by first identifying the specific significant loci (at a

nominal α = 0.05) at generations 22 and 61 in each simulation. Then, the percentage of loci found

significant at generation 22 that remained significant at generation 61 was calculated. Unpaired

T-tests (unequal variance) were performed comparing these percentages for the constrained sim-

ulations versus the unconstrained simulations. Lastly, ability to detect loci with different effect

sizes was compared using a T-test (unequal variance) of the number of significant loci (p� 0.05)

identified for each effect size and each simulation for generation 22 constrained vs unconstrained

models, generation 61 constrained vs unconstrained models, constrained generation 22 vs genera-

tion 61, and unconstrained generation 22 vs generation 61. For all graphs and estimates that

required the calculation of a mean value, missing values were excluded from the calculations. For

example, if a p-value could not be calculated for a given locus due to fixation across all lines for

the same allele, then this locus would be excluded from the power analyses.

Analyses were performed again implementing possible sampling error calculated by the

simulations to compare statistical power, as described in the previous section "Simulations to

Compare Presumptive Statistical Power Across Generations". This was implemented by taking

the actual allele frequency for each line at generations 22 and 61 in the simulations using the

constraint model. These allele frequencies were then replaced with an allele frequency sampled

from the results (rounded to the nearest 0.05) of the population allele frequency of the sam-

pling error simulations (i.e., 0.05, 0.10, 0.15. . . 0.95). For example, if the allele frequency for a

given line at generation 22 (constraint model) was 0.25, then this 0.25 would be replaced by a

randomly sampled estimated allele frequency from the sampling error simulations (generation

22) where 0.25 was the actual population allele frequency. Generation 61 allele frequencies

were similarly replaced using the results of the generation 61 sampling error simulations.

Ethics statement

The selection experiment has been carried out in strict accordance with the approval from the

Institutional Animal Care and Use Committee (IACUC) at two different institutions and

under multiple protocol number. All experiments have been conducted to minimize distress

to the animals. Any injuries or illness were treated in accordance with veterinarian recommen-

dations. The present manuscript uses only published sequence data and new sequence data

from historical tissue samples.

Results

Basic characteristics of genetic variation

The number of variable loci used in the present study includes 4,446,523 for generation 22 and

5,932,148 for generation 61. Generation 61 data had an average read depth of 12X per mouse for
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10 mice in each of the 8 lines, producing an average read depth of over 100 per line for detection

of many more variable SNPs in each line. The overlap of base positions between generations 22

and 61 was 2,045,546 SNPs. As expected, minor allele frequency (MAF), generally decreases for

both HR and C lines between generations 22 and 61 (Fig 1). MAF values for HR and C lines are

generally similar at generation 22; however, these diverge for many regions by generation 61.

Differentiated SNPs and chromosomal regions

For analyses containing all generation 22 loci (N = 4,446,523), WRT identified 1,184 differenti-

ated loci based on 0.01 FDR (Table 1). These loci fall into 258 unique regions (separated by at

least 1 million base pairs). At generation 61, 1,449 loci were identified as differentiated based on

0.01 FDR. Although identifying similar numbers of loci as the generation 22 analyses, P-values

for individual SNPs for generations 22 and 61 show little similarity (Fig 2B and 2C), with arc-

sine-square transform Pearson’s r = 0.116. Ultimately, the SNPs identified at generations 22 and

61 were largely different. Moreover, the SNPs identified at generation 61 clustered into only 11

unique regions, as compared with the 258 regions for generation 22 (Fig 3A and 3B).

Given such notable differences between the SNPs and regions implicated by generation 22

and 61 analyses (Table 2), analyses were repeated focusing only on the loci found in both data

sets (N = 2,045,546). With fewer loci being analyzed, fewer significant SNPs were identified at

FDR = 0.01, as well as fewer regions for all analyses except for WRT with generation 61. The

total peaks identified when using only the shared SNPs includes 187 and 11 regions for genera-

tions 22 and 61, respectively.

Regions after “strict” culling

Using all available SNPs for generation 22, after applying “strict” culling (see Methods), the

remaining regions were reduced to 13. All of the regions implicated by these analyses included

or were near genes with intuitive implications for running behavior (see Discussion). For gen-

eration 61, strict culling reduced the total peaks to only 5 unique regions.

Despite the HR lines reaching selection limits around generation 22 or shortly thereafter

[3], the most differentiated 13 regions (Table 2) have little fixation. Of the SNPs in these

regions (N = 79,198), only about 8.78% are fixed in the HR lines, which is not significantly dif-

ferent from the 9.21% fixed in the control lines (unequal variance t-test comparing % fixed in

the 4 HR versus 4 C lines: p-value = 0.4322). If we repeat this fixation comparison for the loci

shared between generations 22 and 61 (N = 42,745), 1.62% are fixed in the HR lines, which is

still not significantly different from the 1.58% fixed in the control lines (p-value = 0.6129).

Comparison of selection signatures at generation 61 for individual vs.

pooled sequencing data

Originally, the generation 61 individual mouse data were analyzed using mixed models [13].

We compared the previously published p-values from those analyses with the p-values pro-

duced after pooling data by line and analyzing by the WRT test (Fig 3E). The mixed model

analyses produced lower p-values in general, as would be expected due to loss of power with

pooling [52], with the difference being greater for lower p-values. As a result, fewer SNP loci

and hence fewer chromosomal regions were identified as significantly differentiated between

the HR and C lines with pooled data. Of the total regions detected with FDR = 0.01, 7 were

identified at generation 22 that matched the 13 “consistent” regions identified with the mixed

model analyses [13]. The 6 consistent regions that were not identified by analyses of the pooled

data tended to have relatively large p-values for individual SNP loci or cover a narrower area of

the genome, as compared with the other 7 consistent regions.
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Divergence over time

The 5th percentile threshold for the difference in T-scores determined by permutations was

5.139787. About 6.44% of the T-scores for unpermuted data were larger than this. This differ-

ence of 6.44–5% indicates that ~1.44% of our values for the real data (approximately 28,470

Fig 1. Average minor allele frequencies. Average minor allele frequencies for generation 22 control lines, generation

22 HR lines, generation 61 control lines, and generation 61 HR lines by chromosome (numbered on the right).

Regions identified as differentiated at generation 22 are indicated with an orange line above each chromosome’s graph

(regions smaller than 50 kbp are omitted). Regions identified as consistently differentiated at generation 61 (Hillis

et al., 2020) are indicated similarly with a green line.

https://doi.org/10.1371/journal.pone.0306397.g001
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SNPs) may be considered nominally statistically significant for α = 0.05. This result provides

statistical support for our claim that the selection signatures differ between generations 22 and

61 (see Discussion). Defining a region as containing at least 20 significant SNPs with no adja-

cent SNPs separated by more than 1mbp, and considering the 1,400 most significant SNPs,

they cluster into 14 regions on 13 chromosomes (Table 3).

Simulations to compare presumptive statistical power across generations

Simulations were conducted to gauge how much the allele frequencies determined through

sequencing reflect allele frequencies of the actual populations at generations 22 and 61. Gener-

ation 22 allele frequencies have greater variance from the actual population AF than generation

61 (see Fig 4A and 4B for an example of the 0.5 population AF distribution). The greater error

variance in generation 22 is associated with reduced statistical power of 0.3864 versus 0.5031

for generation 61 when comparing simulated allele frequencies of 0.4 and 0.6 (Fig 4C and 4D).

Simulations comparing power with and without a biological constraint

Simulations were performed modeling response to selection assuming either a constraint with

a base of 10,000 revolutions per day and the capacity to evolve to about 17,000 (in the winter)

or no such constraint (see Methods). For both constrained and unconstrained simulations,

wheel running for HR and control lines diverge recognizably at least by generation 6 (Fig 5A),

consistent with the selection experiment. The replicate HR lines for unconstrained and con-

strained models appear fairly similar for earlier generations (Fig 5B and 5C), presumably

because mice are not widely achieving constrained running levels. As expected, the among-

line variation for control lines increases gradually across generations. For the HR lines,

among-line variance does not increase to a noticeable extent and potentially even diminishes

by later generations, a result that is also consistent with the selection experiment [49].

The calculated heritability (slope of the regression of offspring [generation 1] on midparent

[generation 0]) for all 200 simulations for control lines indicate that our parameters resulted in

a narrow-sense heritability of about 0.3621 (N = 8,000 families). For individual lines, the esti-

mated heritability for successive generations was highly variable, as would be expected with

such small sample sizes (10 families/line). However, the means clearly indicate a slow loss of

heritability in the control lines and a more rapid loss in the HR lines, although values never go

to zero (Fig 5E and 5F), consistent with the selection experiment [3].

The standardized selection differentials (calculated within family and sex) for the uncon-

strained model remained very consistently around 0 for the control lines (Fig 5G) and 1.2–1.3

for the HR lines (Fig 5H and 5I). However, the constrained selection differential is on average

0.016 below the unconstrained differential. Although slight, this difference remains consistent

Table 1. WRT results.

Data Total Loci FDR 0.01 (-logP) Significant SNPs All Regions Regions after strict culling

Gen22AF 2,045,546 2.66 630 187 6

Gen61AF 2,045,546 3.06 1,285 11 4

Gen22AF 4,446,523 2.62 1,184 258 13

Gen61AF 5,932,148 3.23 1,449 11 5

Number of SNPs listed represents those that are statistically significant based on a False Discovery Rate of 1% using permutations. Analyses with 2,045,546 loci

incorporate only loci which are shared between generations 22 and 61. Regions distinguished by being separated from the next closest significant locus by more than 1

million bp. Additional regions remaining after additional culling methods have either 20 significant loci or at least 2 significant loci with one having a p-value <1.00E-

04.

https://doi.org/10.1371/journal.pone.0306397.t001
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across nearly all generations (graph not shown). In the actual selection experiment, selection

differentials declined across generations [3].

Under both models, Type I error rate for α = 0.05 when comparing allele frequencies of HR

with C lines was deflated at generation 0, regardless of the effect size for the locus. Type I error

ranged from 0.0313 to 0.0420 with no preference for any effect size (S1 Table). This relatively

low power when comparing the HR and control lines (when the line itself is the experimental

unit) has been documented previously with simulations for both genetic data and phenotypes

[13, 62].

Fig 2. P-value comparisons between generations. Scatterplot comparisons of the generations 22 and 61 p-values with Pearson’s correlation: (A) Generation

22 regularized T-test vs generation 22 WRT test (cor = 0.9997). (B) Generation 22 WRT test vs generation 61 WRT test (cor = 0.0909). (C) Generation 22 WRT

test vs generation 61 WRT test (cor = 0.1156). (D) Distribution of raw p-values (generation 22).

https://doi.org/10.1371/journal.pone.0306397.g002
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As expected, power to detect differentiation between the HR and C lines increased across

generations, but never exceeded 0.057 for any generation for either model. Comparing models

at each generation indicates that power is significantly higher under the unconstrained model

by generation 15, although the difference is trivial (0.0015 with P = 0.0127) (Table 4). This dif-

ferential in power increased through generation 50, when it reached 0.0055 (P = 2.63E-15),

Fig 3. Manhattan plots and volcano plots of differentiation analyses. Manhattan plots for results from (A) the generation 22 WRT test (shared loci), (B) the

generation 61 (pooled) WRT test (shared loci). The red peaks indicates those that exceeded critical threshold (FDR = 0.01) for that individual test. Volcano

plot including -logP vs HR allele frequency minus C allele frequency for (C) generation 22 and (D) Generation 61 (orange points indicate HR AF> C AF;

green points indicate HR AF< C AF). (E) Scatterplot comparing the -log p-values of the generation 61 mixed model analyses (individual mouse) with -log p-

values produced when these same data are treated as pooled sequencing allele frequencies and analyzed with WRT test. Red line has intercept = 0 and

slope = 1. Green line represents the least squares regression line.

https://doi.org/10.1371/journal.pone.0306397.g003
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Table 2. Genomic regions identified as differentiated under “strict” culling.

G22 Region G22 WRT G61 Region G61 WRT Chr minPOS maxPOS Size Loci Shared Loci

1 x 1 152,318,219 153,239,876 921,658 40 25

2 x 2 78,021,909 78,974,325 952,417 3 0

1 x 3 51,199,110 51,602,693 403,584 124 65

3 x 5 32,384,612 32,975,871 591,260 32 4

4 x 5 102,846,390 106,315,986 3,469,597 63 37

2 x 6 40,933,658 41,748,676 815,019 5 1

5 x 6 122,815,876 124,446,843 1,630,968 43 20

3 x 9 41,413,436 42,478,817 1,065,382 1,277 647

6 x 9 80,349,989 82,894,555 2,544,567 27 20

7 x 10 14,067,617 18,376,599 4,308,983 25 7

8 x 10 20,890,526 21,419,406 528,881 33 4

4 x 10 104,966,751 105,529,701 562,951 2 0

9 x 13 46,088,694 46,866,721 778,028 33 13

10 x 14 52,115,206 53,776,455 1,661,250 42 7

11 x 14 77,333,032 78,080,942 747,911 4 3

5 x 15 19,245,017 20,197,326 952,310 27 17

12 x 18 57,707,454 60,118,834 2,411,381 128 81

13 x 18 78,018,740 78,504,680 485,941 4 4

A test is deemed to have produced a differentiated region if the region contains at least 20 SNPs significant at FDR = 0.01 or at least 2 SNPs significant at FDR = 0.01 and

at least one SNP with p-value < 1.0E-04 (See Methods: Determination of Selection Signatures). “Loci” listed are those significant at FDR = 0.01 (Table 1), the counts

themselves match the number of differentiated loci identified by the statistical test with the most such loci. “Shared Loci” are the number of loci listed in the “Loci”

column that are also shared between both generations.

Bolded loci match “consistent” regions identified by Hillis et al. [13]

https://doi.org/10.1371/journal.pone.0306397.t002

Table 3. Genomic regions of divergent evolution.

Chr minPOS maxPOS Loci Median_T Highest_T T_position g22 g61a

1 152,255,010 153,208,066 44 48.9 94.9 152,795,939 WRT

1 156,267,494 156,908,946 21 48.5 115.5 156,699,891

2 153,709,397 157,032,971 20 46.0 102.8 154,908,418 1 Test

3 45,831,668 52,497,670 49 51.0 139.9 51,543,977 2 Tests

4 89,020,582 90,615,570 26 52.5 103.3 90,007,699 1 Test

5 107,675,741 111,271,760 30 55.2 232.2 109,810,077 Consistent

9 41,416,364 42,248,169 31 47.3 99.8 41,533,058 Consistent

10 101,702,890 105,671,151 154 47.4 177.0 103,108,543 2 Tests

12 109,050,203 110,779,901 28 46.6 109.2 109,228,613

14 96,560,689 98,613,561 76 49.5 212.2 97,831,005 Consistent

15 18,635,736 20,608,793 39 51.4 208.5 19,984,048 Consistent

16 45,132,582 47,948,007 23 46.5 163.9 45,158,346

18 69,603,969 74,277,731 62 46.7 147.5 73,016,958

19 35,121,427 35,736,790 40 48.7 250.1 35,699,388

aTests here are the three tests used by Hillis et al. 2020 (local maxima, haplotype, and FixedHR/PolyC) [13]. “Consistent” is the term used to describe regions identified

by all three tests.

https://doi.org/10.1371/journal.pone.0306397.t003
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before beginning to diminish with later generations. Although the information in Table 4 does

not tell us about the power to detect loci based on effect size (see numbered list below), it does

establish that we expect more total selection signatures at generation 61 than 22 (see

Discussion).

Fig 4. Variance and power simulation results. Simulations for a population allele frequency of 0.5 for (A) generation 22 and (B) generation 61. See Methods

for details. Values shown are allele frequencies for each of 100,000 simulated data sets for a single line. Methodological differences in the sampling of mice and

sequencing procedures for the two generations result in greater sampling error for generation 22 (i.e., larger SD). Note that binning is done such that loci that

fall on a break (e.g., 0.05) are grouped into the lower bin (e.g., 0 to 0.05). Similar simulations were then conducted to create data sets for use in estimating

statistical power for detecting selection signatures for generations 22 and 61. (C) Distribution of p-values for simulated allele frequencies of 0.4 versus 0.6, for

generation 22. Power for α = 0.05 is 0.3864. (D) Distribution of p-values for simulated allele frequencies of 0.4 versus 0.6, for generation 61. Power for α = 0.05

is 0.5031.

https://doi.org/10.1371/journal.pone.0306397.g004
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The average Pearson correlation between p-values across 2,096 loci for generation 22 and

61 for the constrained model (r = 0.3843) was not statistically different from that for the

unconstrained model (r = 0.3889: total N = 200, unpaired-T = -1.6938, P = 0.0919). In the

unconstrained model, 33.3% of the loci significantly differentiated at generation 22 (α = 0.05)

were still differentiated at generation 61, versus 31.5% under the constrained model

(unpaired-T of percentage of loci consistently different for generations 22 and 61 at p� 0.05

Fig 5. Power simulations considering a constraint. Simulated running levels for (A) mean running of 4 non-selected control lines (blue) for 200 simulations

compared with mean running of 4 HR lines under 100 unconstrained simulations (dark red) and 100 constrained simulations (light red). (B) Individual HR

and control lines single unconstrained simulation. (C) Individual HR and control lines single constrained simulation. Black lines show the mean narrow-sense

heritability for four lines within each linetype for (D) 100 control line simulations (arbitrarily the first 50 from each model), (E) 100 simulations for HR lines

with unconstrained running, and (F) 100 simulations for HR lines with constrained running (16,000 revolutions). Standardized selection differentials

(calculated within family and sex) from simulations for (G) control lines, (H) HR lines without a constraint, and (I) HR lines with a constraint. The red line

represents the mean of all heritability and selection differentials (N = 100). Note different axes for panel G versus H and I.

https://doi.org/10.1371/journal.pone.0306397.g005
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for 200 simulations = -2.4269, P = 0.01614). This consistency of about 1/3 is more than 3 times

greater than for the real data (9.12% for T-tests), which mirrors the drop in the correlation of

p-values between generations 22 and 61 (Fig 2B, r = 0.0898). Incorporation of sampling error

into the constrained model lowered the correlation between p-values to 0.2695 and the propor-

tion of loci significant at generation 22 still significant at generation 61 to 22.7%.

Comparisons of power to detect differentiation between the HR and C lines in relation to

effect size of locus and generation under two simulation models (S2 Table) indicates:

1. power increased with effect size, as expected;

2. at generation 22, power was greater in the unconstrained model for loci with effect sizes

25.6 or above;

3. at generation 61, power was greater under the unconstrained model for loci with effect sizes

12.8 and above (excluding the largest effect size, 204.8);

4. under both models, power was consistently greater at generation 61, except for the largest

effect size, where the power is reversed.

Comparison of selection signatures in generations 22 and 61 for pooled

data

When the average allele frequencies of SNPs within regions identified by strict culling at gener-

ation 22 (this study) are compared to the average AF of those loci at generation 61, an increase

in among-line variance is apparent for generation 61, within both the HR and C linetypes (Fig

6A). All else being equal, this increase in among-replicate variance should lower the statistical

Table 4. Simulated statistical power for constrained and unconstrained models.

Generation Unconstrained

power

P-value for Unc. Comparing present

generation to previous generationa
Constrained

power

P-value for C. Comparing present

generation to previous generationa
P-value for Constrained vs

Unconstrainedb

0 0.0408c NA 0.0409c NA 0.8436

5 0.0417 0.1192 0.0423 0.0365 0.3688

10 0.0429 0.0379 0.0429 0.2685 0.9817

15 0.0447 0.0060 0.0432 0.6693 0.0127

20 0.0456 0.1272 0.0425 0.1891 2.69E-07

22 0.0461 0.4333 0.0425 0.9470 2.31E-07

25 0.0465 0.5290 0.0434 0.1721 1.58E-06

30 0.0484 0.0042 0.0447 0.0374 4.61E-08

35 0.0503 0.0041 0.0463 0.0155 4.51E-09

40 0.0527 0.0006 0.0476 0.0423 5.31E-13

45 0.0544 0.0160 0.0497 0.0009 6.42E-11

50 0.0557 0.0584 0.0502 0.4380 2.63E-15

55 0.0562 0.4050 0.0510 0.2169 2.40E-13

60 0.0565 0.7307 0.0512 0.8162 3.70E-13

61 0.0563 0.8387 0.0512 0.9147 6.27E-13

a These p-values are calculated using a T-test assuming unequal variance comparing the power of the generation for that line to the previously listed generation (e.g.,

unconstrained power at generation 5 compared to generation 0 has a p-value of 0.1317).
b P-value from a T-test (unequal variance) comparing the power of the 100 unconstrained simulations to the 100 constrained simulations
c Type I error rate.

https://doi.org/10.1371/journal.pone.0306397.t004
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power to detect differentiation between the HR and C linetypes. In agreement with this expec-

tation, most of these strict regions at generation 22 (Table 2) are no longer significantly differ-

entiated at generation 61 (Table 2 and Fig 6A). However, several of the 5 strictly culled regions

at generation 61 also show some evidence of differentiation at generation 22 (Fig 6E).

Although strict culling methods exclude regions identified with generation 61 AF analyses,

Fig 6. Power simulations considering a constraint. (A) Allele frequencies of regions identified as significant (via strict culling) at generation 22 (Table 2)

(excepting region 18, for which no loci were available in the generation 61 data). Line plot examples are provided for generation 22 (B) region 1, (C) region3,

and (D) region 10, with generation 22 on left and generation 61 on right. (E) Allele frequencies of regions identified as significant at generation 61. (F) Line

plot example for generation 61 region 6. SNPs included have a nominal p<0.05 at generation 22 and any SNPs at generation 61 which matched the generation

22 SNPs (shared loci, see Table 1).

https://doi.org/10.1371/journal.pone.0306397.g006
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regions implicated in generation 22 with FDR = 0.01 culling alone do have considerable over-

lap with some of these 5 regions identified at generation 61. Generation 61 regions 3, 4, and 5

(Table 2) were significant at FDR = 0.01 for all three analyses at generation 22 (S3 Table).

For some of the regions identified as significant at generation 22, differentiation may have

been lost by generation 61 as result of a single line diverging from the others (for example, line 3

in region 1 or line 7 in region 3 [Fig 6B and 6C]). In general, mean differences at generation 22

are much smaller than at 61, but also with much less among-line variance. A particular example

of this includes region 10 (Fig 6D), which is the only region identified at generation 22 (after

strict culling) to continue to be detected as differentiated at generation 61 (see Discussion).

Possible biological function of generation 22 differentiated regions

A total of 79 genes (including predicted genes and miRNA) were identified using “strict” cull-

ing of generation 22 regions. These were insufficient for powerful ontology tests and so regions

containing at least five differentiated loci at FDR <0.01 were included, bringing the total num-

ber of included genes to 345 (S4 Table). Of these 345 differentiated genes, 285 were recognized

by the Panther database (used by the Gene Ontology Resource) and used for identifying poten-

tial biological function. Those not recognized were generally miRNA, predicted, or olfactory

genes.

GO Biological Functions implicate antifungal innate immune response, sensory perception

of smell, and embryonic skeletal system morphogenesis. The antifungal enrichment appears to

be the result of a group of C-type lectin genes found on chromosome 6 (chr6:122,815,876–

124,446,843). It may not be a coincidence that this region also includes a group of vomeronasal

genes contributing to the sensory perception of smell term. The genes that implicate the

embryonic skeletal morphogenesis term include a cluster of Hoxb genes found on chromo-

some 11 (chr11:93,129,916–96,570,699).

A few genes specifically from the 79 found in the “strict” regions merit mention for their

relevance to the running phenotype, including Cited2 (adrenal cortex formation), Rbm24 (pos-

itive regulation of skeletal muscle fiber differentiation), and Dspp (negative regulation of bone

development).

Discussion

Overview

Previously, whole-genome sequence data for individual mice at generation 61 of the High-

Runner mouse selection experiment were used to identify genomic regions differentiated

between HR and control lines. Thirteen of these were termed "consistent" because they

appeared with three different analytical methods [13]. These 13 regions contained genes asso-

ciated with known phenotypic differences between the HR and control lines and intuitive asso-

ciations with running ability and/or motivation/reward systems. However, given that the HR

lines had begun to reach selection limits around generations 17–27, depending on line and sex

[3], tens of additional generations, with continuing random genetic drift, could have obscured

many selection signatures. Therefore, in the present study, we analyzed allele frequencies for

the lines sampled at generation 22, based on DNA pooled by line. These analyses of generation

22 identify hundreds of genomic regions differentiated between the HR and C lines

(FDR = 0.01), despite using pooled sequence data rather than sequences for individual mice

[52]. We then reanalyzed the data from generation 61 as allele frequencies by line, to mimic

the data available for generation 22, and found that the regions identified as differentiated at

generation 61 are, at best, weakly differentiated at generation 22. Nevertheless, both genera-

tions’ differentiated regions contain genes that make biological sense for wheel-running
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behavior. Below, we discuss (1) implications of the differences in data type between genera-

tions 22 and 61, (2) possible statistical and biological explanations for the differences in identi-

fied regions, and (3) genes and biological systems highlighted by the genomic regions

identified by generation 22 analyses (after strict culling).

Differences in selection signatures at generations 22 and 61

We expected estimates of selection signatures to be similar at generations 22 and 61, based on

the fact that the HR lines had mostly reached selection limits by generation 22 [3], such that

the most biologically important loci would have gone to fixation or at least reached equilibria

across most or all of the HR lines. In agreement with this expectation, of the 13 "consistent"

regions identified by Hillis et al. [13] for generation 61 (using individual mouse data), 8 were

still identified by at least one of the tests (FDR = 0.01) using the generation 61 genotypes

pooled into allele frequencies per line. Generation 22 analyses of pooled sequence data identi-

fied 7 of the 13 consistent regions (although several of these regions were only detected by a

few SNPs: S3 Table). Interestingly, the consistent region on chromosome 14 was more strongly

detected at generation 22 than at generation 61 using pooled sequence analyses (Table 2).

On the other hand, the strongest selection signatures observed at generation 61 with the data

treated as pooled sequences are not among the strongest ones observed at generation 22 (based

on number of SNPs detected and their p-values), despite continued selection on the HR lines.

For example, region 1 of the generation 61 “strict” culling pooled analyses (chr3:51,199,110–

51,602,693) included 124 SNPs (Table 2), and whereas generation 22 analyses did not detect

any of these loci as significant. Another example, region 3 of the generation 61 pooled analyses

(chr9:41,413,436–42,478,817) included 1,277 SNPs (FDR = 0.01), but none of the 647 shared

loci were identified by in the generation 22 analyses (S3 Table). When directly comparing SNPs

differentiated at FDR = 0.01, we see only a single SNP of overlap for the WRT test.

In addition to the differences in individual SNP results, a 17-fold greater number of regions

was identified by generation 22 analyses than generation 61 pooled analyses at FDR = 0.01

(Table 1). This ratio applies to all statistical tests and the complete SNP analyses for each gener-

ation, as well as the analyses of SNPs shared by the two generations. Moreover, the SNPs iden-

tified at generation 61 were clustered into far fewer regions (Table 1). Broadly, this difference

in numbers of selection signatures have at least two possible explanations, which are not mutu-

ally exclusive: (1) differences in data type, quality, and quantity; (2) biological differences

between generations 22 and 61.

Differences in data type, quality, quantity, and sampling error. Our power to detect dif-

ferentiation in allele frequencies should have been lower for generation 22 than for generation

61 (Fig 4C and 4D). As also noted in the Methods, the estimates for SNP allele frequencies per

line at generation 61 were based on ~10 mice/line sampled and an 12X average read depth per

mouse, yielding a total of 5,932,148 variable SNP loci [13]. For generation 22, pooled sequenc-

ing was done with ~20 mice/line and an average read depth of 24X, yielding 4,446,523 variable

SNPs (Table 1). Generally, with an average read depth of 12X per mouse, both alleles will be rep-

resented for each mouse (i.e., 20 alleles per line) for generation 61 allele frequencies. However,

with 24X average read depth for generation 22, simulations involving sampling alleles with

replacement show that generation 22 is prone to vary more from the actual population allele fre-

quency (Fig 4A and 4B). Thus, the much greater number of differentiated SNPs and chromo-

somal regions detected at generation 22 would not appear to be simply a function of greater

statistical power versus generation 61. Thus, we now consider possible biological explanations.

Biological differences. One way to highlight the differences in selection signatures

detected at generations 22 and 61 is to note that of the differentiated regions detected for
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generation 61, two of them contain hundreds of statistically significant SNPs (FDR = 0.01)

shared between the generation 22 and 61 data sets. Despite this, those two regions are not

among the more differentiated regions in the Manhattan plots (Fig 3A and 3B).

What biological explanations might account for such discrepancies? One possibility is a

physiological constraint that eliminates the need for all loci favorable to wheel running to be

maintained at high frequencies once a selection limit is reached (see verbal model in [47]). We

consider this from the perspective that many complex traits are influenced by hundreds or

thousands of loci [63, 64]. Voluntary exercise behaviors would likely be among them, given

that they incorporate numerous physiological and morphological traits related to ability (e.g.,

cardiac muscle, skeletal muscle, bone, metabolism, water and temperature homeostasis) as

well as aspects of motivation and reward (e.g., dopamine signaling, chemosensory systems)

[65, 66].

Although biological constraints can be defined in various ways [67], in the present context,

a constraint would be anything that limits the maximum revolutions that an individual mouse

can run during the testing period. Previously, we discussed how different unique responses to

identical selection criteria (i.e., “multiple solutions”) could occur and referenced constraints as

a potential explanation [47]. To utilize and expand on their example, suppose that mice are

subject to a constraint on wheel running caused by joint pain: they stop running when the

pain becomes intolerable. In this scenario, joint pain is sufficient to limit wheel running and it

serves as a “weak link” or single limiting factor in the biological systems required for high

wheel running. Then suppose 10 alleles located at 10 independent biallelic loci, with entirely

additive effects, are capable of increasing wheel running. Suppose further that only five such

alleles are needed to achieve the maximum amount of wheel running permitted by joint pain.

Under this model, if selection acts on a population to increase running, then (1) fixation of the

favorable allele at any five of the 10 loci will coincide with a selection limit determined by pain

tolerance, (2) none of the alleles at any of the 10 loci must be fixed to reach the pain-deter-

mined limit, (3) more than 5 favorable alleles could be maintained at intermediate allele fre-

quencies, and (4) as long as enough favorable alleles are maintained for the selection limit,

some favorable alleles can be lost without detriment to wheel running. These factors allow for

substantial variation among the replicate lines and considerable flexibility for change within a

given line, even for favorable wheel-running alleles at the selection limit. This possibility of

"genetic churn" beyond a selection limit that is caused by a physiological constraint also

implies that genotype-to-phenotype maps [68–71] may be moving targets and hence difficult

to identify. Therefore, we used simulations to compare power to detect and consistency in

detected selection signatures, both with and without a physiological constraint.

Allele frequency divergence over time

The relatively large number of SNPs identified to be divergent between generations 22 and 61

illustrate a shift between the generations. Furthermore, regions with the greatest divergence

between the generations align closely with some of the previously identified regions, particu-

larly those identified by the generation 61 mixed model analyses (Table 3). By generation 22,

the lines had not had as much time to evolve as much separation in allele frequencies between

HR and C as by generation 61. As a result, the differences between the linetypes are generally

between -0.5 and 0.5 at generation 22 (Fig 3C), whereas this difference expands to between -1

and 1 for generation 61 (Fig 3D). Given that the significant regions identified at gen 61 are typ-

ically going to be those whose difference is near -1 or 1, most likely those same regions at gen

22 had differences within the -0.5 and 0.5 range. Therefore, a growing difference in HR and C

allele frequency had to have occurred, in our data, between gen 22 and gen 61 to observe a
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significant difference at 61. Such loci would naturally be among the more significant in the dif-

ference of t-tests over time.

Simulations comparing power under constrained versus unconstrained

models

These simulations were conducted to test whether a physiological constraint on the phenotype

of wheel-running behavior could reduce the consistency of loci identified at different genera-

tions of a selection experiment. To better simulate realistic phenotypic variance within the pop-

ulation, both the wheel-running and constraint phenotype simulations were based on equations

with both genetic and environmental sources of variance, such that both could evolve.

Similarities between the constrained model and real data. The constrained model

appears to better reflect what we observe in the actual response to selection. This is due to the

lack of a clear selection limit achieved under the unconstrained model (Fig 5A). Although the

response to selection diminishes over time (likely due to the reduction in heritability: Fig 5E),

a clear plateau is not apparent. In contrast—as must be the case—a clear plateau occurs under

the constrained model.

Correlation between generations 22 and 61 p-values. For the tests comparing allele fre-

quencies at each of 2,096 loci between the HR and C lines, the correlation of p-values between

generations 22 and 61 was statistically lower in the constrained model (r = 0.3843) as com-

pared to the unconstrained model (r = 0.3889), though still 4x higher than for the real genomic

data (r = 0.0909) (Fig 2). Even with the inclusion of sampling error, the correlation

(r = 0.2695) is nearly 3x greater than for the real genomic data, which indicates that other fac-

tors (e.g., gene interactions) must be contributing to the differences between the generations.

In spite of the similarity in the correlation of p-values between generations for simulations, the

between-generation consistency of detected selection signatures was slightly but statistically

greater under the unconstrained (33.3%) than under the constrained model (31.5%). This differ-

ence may be due to the constrained model having very slightly (~0.016) though consistently lower

selection differentials (Fig 5G versus 5H), which could lead to less fixation of favored alleles. How-

ever, the relatively small difference between models in consistency of selection signatures is not

enough to explain the large differences in the real data between generations 22 and 61 (Table 2).

The inclusion of sampling error into the estimates decreased the 31.5% consistency between gen-

erations 22 and 61 differentiated loci to 22.7%. This level of consistency with simulated data

remains more than 2-fold higher than for the real data (9.12%), thus implicating the presence of

additional factors that reduce consistency in the real data (e.g., epistatic effects).

Overall, our simulations fail to demonstrate why we observe a 17X drop in significant

regions from generation 22 to 61 (Table 1), implying instead that we should detect more at

generation 61 than at 22 (Table 4).

Effect sizes of loci. Under both models, more loci were detected at later generations

(Table 4). However, the power to detect loci with the largest effect size was much higher at ear-

lier than later generations (S2 Table and S1 Fig). This pattern makes sense in consideration of

the factors that affect the average difference in allele frequency between the HR and control

lines and the variance among replicate lines within linetypes. Drift will generally increase the

variance among lines with each generation. The allele frequencies in the simulated control

lines will be affected only by this drift. Allele frequencies in the HR lines will be affected both

by drift and selection, where selection will have stronger effects at loci with larger effect sizes.

This results in something of a race between selection increasing the difference in allele fre-

quencies between HR and control lines, while drift increases among-line variance for both HR

and control lines. For loci with small effect sizes, drift will have a relatively greater influence
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over allele frequencies than selection at any generation, and thus detection rates never vary far

from the Type I error rate, i.e., power is virtually zero (S2 Table). Loci with large effect sizes,

however, are able to differentiate rapidly, often leading to fixation of the favored allele in our

simulations (S1 Fig). Even after fixation in the HR lines, drift is still able to increase allele-fre-

quency variance among the control lines (potentially to the point of fixing loci for opposite

alleles), thus further reducing the power to detect any differentiation. Thus, the power to detect

signatures of selection should increase the most rapidly across generations for loci with the

largest effect sizes, but power is also expected to decline after fixation of the favored alleles in

the HR lines and with continuing increase in variance among the control lines (S1 Fig).

That the power to detect a locus as differentiated is correlated with its effect size is unsur-

prising. For example, under the unconstrained model the power to detect selection signatures

for loci with 0.4 effect size is about 16.6-fold less than the power to detect loci with 204.8 effect

size and 12.8-fold less for the constrained model (generation 22). This gap diminishes to about

7.7-fold difference (both models) by generation 61 (S2 Table), presumably due to the reasons

described in the previous paragraph. However, the 0.4 effect size loci are far more numerous

than the 204.8 effect size loci (N = 720 and 8, respectively). Consequently, the number of 0.4

effect size loci detected as significant is nearly 5-fold greater (unconstrained) and more than

7-fold greater (constrained) than the number of 204.8 effect size loci detected. The most nota-

ble difference between the constrained and the unconstrained models is that at generation 22

the unconstrained model yielded substantially more power than the constrained model for loci

with the largest effect sizes (0.724 to 0.485, respectively; unpaired t-test, P = 4.01E-22). This

would imply that constraints may have a substantial impact on the ability to detect selection at

loci with the greatest effect sizes, a result that deserves further study.

For identifying possible biological functions, we would ideally focus on loci with relatively

large effect size, as these will have the most direct influence on the phenotype and may serve as

potential targets for future functional studies. We have no information on effect sizes of SNPs

or regions detected as differentiated for our real data. The relative proportions of low- and

high-effect size loci among the detected selection signatures in the real data will likely vary

from our simulations, depending on the actual distribution of those effect sizes and other fac-

tors. However, the simulations do suggest that we may have numerous small-effect size loci

among our detected selection signatures. The inclusion of the “strict” culling method was

meant to prioritize regions that would have large effect sizes. Having more loci that are differ-

entiated and linked together would be expected from those regions under strong selection

because recombination would have fewer generations to break up linked base pairs before the

region becoming fixed in the HR lines. As the simulations have so many more loci with small

effect sizes, at generation 0, when we compare the lowest p-value produced for each simulation

for the 0.4 effect size we tend to see lower p-values than loci with 204.8 effect size simply

because of more opportunities to produce a low p-value. However, generation 22 appears to be

better for detecting a greater proportion of selection signatures from loci with large effect sizes

as the relative proportion on large effect size loci appears to be higher (S2 Table).

Possible biological functions of generation 22 differentiated regions

Ontology analyses identified biological processes that can be grouped into three categories:

sensory perception of smell, antifungal innate immune response, and embryonic skeletal sys-

tem morphogenesis. Of these, the system that is most consistent between generations 22 and

61 is the perception of smell, which was among the mostly clearly differentiated systems at gen-

eration 61 [13]. As was discussed by Hillis et al. [13], the experimental procedure for measur-

ing wheel running, for logistical reasons, involved mice being placed on wheel over three
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batches and mice in batches 2 and 3 are placed on wheels which still smell of the previous

mouse [27]. Evidence of an evolutionary response to this is visible in the HR lines in that HR

mice will run at very different speeds if on a wheel that is clean, previously traversed by a male,

or previously traversed by a female [72]. Alterations in the transcriptome also indicates

changes in olfactory and vomeronasal systems [48]. Taken together, these results indicate that

perception of smell may be a notable factor in their motivation for running on the wheels and

also consistent with the idea that motivation is expected to evolve before ability [20, 73]. Inter-

estingly, although both generations demonstrate evolution in genomic regions association

with olfaction and vomeronasal, the regions implicated in each generation are different, with

exception of the region on chromosome 14 (chr14:52,115,206–53,776,455), which was identi-

fied by the generation 22 WRT analyses and the generation 61 mixed model analyses

(Table 2). However, additional studies should be done to address the effects of olfactory/vom-

eronasal systems more directly on running behavior of the HR mice. This could be done with

ablation procedures on HR and C mice and observing changes in running behavior. The anti-

fungal ontology term is possibly a hitchhiker with the vomeronasal genes also present in the

differentiated region (chr6:122,815,876–124,446,843).

Ontology analyses also indicated embryonic skeletal system development as result of a group

of Hoxb genes within a differentiated region. If these Hoxb are the driving force underlying the

many skeletal differences that have been documented between HR and C lines [38–46], then this

is an exciting discovery because it would represent a response to selection in a group of genes

known to be evolutionarily influential in body patterning and development [74]. However,

whether the Hoxb genes are the cause of skeletal differentiation is unclear. Although Hoxb genes

may play a role in these changes, they are far from the only candidates. GO term “skeletal system

development” includes 7 additional non-Hox genes, including Phospho1, Col1a1, and Mbtd1,

which are all located in the same differentiated region as the Hox genes. Furthermore, individual

loci demonstrating the greatest differentiation do not appear to be in Hox genes themselves or

their regulatory regions. Even if Hox genes are a hitchhiker in a region with other genes more

directly targeted by selection due to their skeletal effects, exploring potential side effects of this

evolution would be of interest. Expression analyses during developmental stages when these genes

are most active may provide insight into how Hox genes may be altered in the HR mice.

Other genes of potential interest. The 79 genes included in top regions also contain a few

of particular note: Cited2, Rbm24, and Dspp. Each of these genes is associated with ontologies

and phenotypes that have been identified as differentiated between the HR and C mice. Cited2
is a gene whose knockout (KO) has been associated with alterations in brain and heart morphol-

ogy [75–77] and has also been associated with adrenal development [78]. As noted in the intro-

duction, HR mice have larger brains and hearts than C mice [25, 28, 32, 33]. Additionally,

adrenal corticosterone levels were found to be different between the linetypes [73, 79]. Rbm24 is

a gene associated with skeletal muscle fiber differentiation, particularly during regeneration fol-

lowing injury [80–82]. The HR and C lines have demonstrated differences in muscle fiber types

within muscles important for wheel running such as the gastrocnemius [35–37]. However, dif-

ferential response to muscle injury has not been found between the linetypes [83]. Lastly, Dspp
was identified among the differentiated genes. This gene has been associated with development

of long bones (such as femurs) and cortical and trabecular bone thickness [84, 85]. The HR and

C mice have shown various differences in bone morphology (see Introduction).

Limitations and conclusions

Some of the limitations of the present study include trying to compare results of pooled

genome sequencing (generation 22) to individual mouse sequencing (generation 61: [13]).
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Though the alleles of the individual mice can be combined to imitate pooled genome

sequences, the differences in number of mice sampled and sampling error make comparisons

problematic (see Methods). This is illustrated by the decrease in p-value correlations (between

generations 22 and 61) as compared to both the unconstrained and constrained simulations.

Nevertheless, as argued above, neither the increase in number of regions detected as differenti-

ated at generation 22 nor the lack of correspondence between detected regions at generations

22 and 61 can be explained solely by methodological differences.

The constraint simulations have their own limitations in that they do not account for male

vs female running differences (females run more than males) [3]. In addition, dominance,

epistasis, and gene-environment interactions were not considered. The exclusion of these fea-

tures may be why we were unable to achieve realistic levels of among-line variation, particu-

larly among the High Runner lines. This model also does not include linkage disequilibrium

or realistic rates of recombination. Additionally we do not include reduction in breeding suc-

cess across generations, which may explain the drop in selection differential observed by Car-

eau et al. [3]. Lastly, we did not explore the potential effects of relaxing selection for four

generations, as when the mice were moved from Wisconsin to California (see Introduction). A

cluster of generations of no selection in the HR lines could allow for some drift of the favored

alleles.

Although, we are unsure as to why we see so many regions at FDR = 0.01 that do not corre-

spond to the generation 61 findings by Hillis et al. [13], our simulations suggest that regions

with the strongest effect sizes on wheel running are likely to be among the generation 22

regions. Given the statistical significance and number of SNPs identified in our “strictly” culled

differentiated regions, these regions are most likely to have had the greatest impact on wheel

running at the start of the selection experiment. Among these regions are genes related to

olfactory/vomeronasal function, reward pathways, and a miRNA cluster that has been associ-

ated with energy homeostasis in neonatal development. All of these associations make sense

based on known phenotypic differences between the HR and control lines (see Introduction).

Future directions might include more complex simulations [14, 50, 86], which may better

help to explain the 17X increase in regions detected at generation 22. Including genomic data

from more generations (especially from the base population, generations near to but before

the selection limit, and current generations [i.e., around 100]) may provide more clarity

regarding how the response to selection changes across phases of the selection response [62,

87]. Analyses using all loci and a kinship matrix would enable determination of some interac-

tions between genes. Functional analyses, such as knockouts of some of the genes whose alleles

appear to have been favored by selection, may provide direct evidence of influence on wheel-

running behavior [88–90]. Furthermore, analyses of other physiological aspects of these KO

mice may help to better understand the mechanisms by which the gene influences wheel

running.
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