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Abstract12

The diversity outbred (DO) mice and their inbred founders are widely used models of human disease.13

However, although the genetic diversity of these mice has been well documented, their epigenetic14

diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation,15

are important regulators of gene expression, and as such are a critical mechanistic link between16

genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice17

and their founders is an important step toward understanding mechanisms of gene regulation and18

the link to disease in this widely used resource. To this end, we performed a strain survey of19

epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications20

(H3K4me1, H3K4me3, H3K27me3, and H3K27ac), and DNA methylation. We used ChromHMM to21

identify 14 chromatin states, each of which represented a distinct combination of the four histone22

modifications. We found that the epigenetic landscape was highly variable across the DO founders23

and was associated with variation in gene expression across strains. We found that epigenetic24

state imputed into a population of DO mice recapitulated the association with gene expression25

seen in the founders suggesting that both histone modifications and DNA methylation are highly26

heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be27

aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide28

a data resource that documents strain-specific variation in chromatin state and DNA methylation29

in hepatocytes across nine widely used strains of laboratory mice.30

Introduction31

The development of the diversity outbred (DO) mice (Svenson et al., 2012; Churchill et al., 2012;32

Koyuncu et al., 2021; Kurtz et al., 2020; Bogue et al., 2015; Kebede and Attie, 2014; Keller et al.,33

2019) and their sister population, the collaborative cross (CC) (Threadgill et al., 2011; Threadgill34

and Churchill, 2012; Durrant et al., 2011; Mao et al., 2015; Graham et al., 2021), has demonstrated35

the critical importance of genetic diversity in our understanding of disease biology. These mice36

have been used to investigate the genetic architecture of complex disease (Tyler et al., 2017), to37

identify genetic modifiers of Mendelian disease (Takemon et al., 2021), and to study the effects of38

genetic variation on susceptibility to infectious disease (Kurtz et al., 2020). These models have39
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the potential to uncover mechanistic insights into multiple aspects of human health and disease.40

However, although the genetic diversity of these mice is well documented, the epigenetic diversity of41

these strains is relatively unknown.42

Epigenetic modifications, such as histone modifications (Xu et al., 2021; Godini et al., 2018) and43

DNA methylation (Wiench et al., 2011; Ji et al., 2010), regulate gene expression by modifying44

the accessibility of DNA to transcription machinery (Lawrence et al., 2016; Jones, 2012; Moore45

et al., 2013). These modifications vary across cell types allowing organisms to develop all of their46

diverse cells from a single genome. Epigenetic modifications have also been shown to vary across47

individuals in humans (McVicker et al., 2013; Kang et al., 2021), rats (Rintisch et al., 2014), cattle48

(Prowse-Wilkins et al., 2022), and mice, including some of the DO/CC founders (Link et al., 2018;49

Schilling et al., 2009; Zhou et al., 2022; Grimm et al., 2019; Xie et al., 2012; Gujar et al., 2018). This50

epigenetic variation across individuals has been shown to be heritable (Schilling et al., 2009; Grimm51

et al., 2019) and to be associated with variation in gene expression (Kang et al., 2021; Rintisch et al.,52

2014; Prowse-Wilkins et al., 2022), cellular phenotypes (Link et al., 2018), and clinical outcomes53

(Kang et al., 2021; Hawe et al., 2022).54

Regulation of gene expression through heritable epigenetic variation is thus an important link55

between genotype and phenotype. Because the majority of disease-associated genetic variants56

discovered in humans are in gene regulatory regions, it has been suggested that it is the regulation57

of gene expression, rather than alteration of protein function, that is the primary mechanism58

through which genetic variants confer disease risk (Maurano et al., 2012; Farh et al., 2015; Pennisi,59

2011; Hindorff et al., 2009). Therefore, having well annotated maps of epigenetic modifications in60

disease models like the DO/CC founders is potentially critical to understanding mechanisms of gene61

regulation and its impact on disease.62

To extend documented epigenetic variation to all DO/CC founders, we undertook a strain survey63

of epigenetic variation in hepatocytes across the eight founders of the DO/CC mice, as well as64

DBA/2J, which, along with C57BL/6J, is one of the founders of the widely used BxD recombinant65

inbred panel of mice (Ashbrook et al., 2019).66

We assayed four histone modifications: H3K4me3, which is associated with promoter regions67
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(Heintzman et al., 2007; Bernstein et al., 2005), H3K4me1, which is associated with enhancer regions68

(Heintzman et al., 2007), H3K27me3, which is associated with polycomb repression (Bonasio et al.,69

2010), and H3K27ac, which has been associated with active enhancers and promoters (Creyghton70

et al., 2010; Heintzman et al., 2009; Rada-Iglesias et al., 2011). We also assayed DNA methylation71

which is differentially associated with gene expression depending on its position relative to the gene72

(Moore et al., 2013; Jones, 2012). Methylation of DNA in promoters inactivates the promoters73

thereby reducing gene expression, whereas methylation of DNA in insulators inactivates the insulators74

thereby increasing expression of the targeted gene (Jones, 2012).75

We used ChromHMM (Ernst and Kellis, 2012) to identify 14 chromatin states, each representing a76

unique combination of the four histone marks. We investigated the association between variation in77

these epigenetic markers and variation in gene expression across the nine inbred strains.78

We extended our analysis into a population of Diversity Outbred (DO) mice (Churchill et al., 2012;79

Svenson et al., 2012; Gatti et al., 2014; Chick et al., 2016) to investigate the heritability of histone80

modifications and DNA methylation with respect to gene expression. To do this, we imputed the81

14 chromatin states and DNA methylation into the DO mice. We then mapped gene expression82

to the imputed epigenetic states to assess the extent to which gene expression in the DO mice83

corresponded with imputed epigenetic variation.84

Results85

Both gene expression and epigenetic state were consistent within each inbred mouse strain but86

varied across the strains suggesting strong genetic regulation of both modalities. This is seen as a87

clustering of individuals from the same strain in principal component plots of transcriptomic and88

epigenetic features (Fig. 1). Patterns of gene expression (Fig. 1A), DNA methylation (Fig. 1B)89

and individual histone modifications (Fig. 1C-F) clustered in similar patterns, although a relatively90

small percent of the variation in the methylome was related to strain. The three subspecies musculus91

(in red), castaneous (in green) and domesticus (all others) were widely separated suggesting that92

subspecies structure made up the majority of the observed variance. The domesticus strains largely93

clustered together. These data provide evidence that epigenetic features relate to gene expression in94
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a manner that is consistent with the subspecific origin of the mouse strains (Yang et al., 2007). For95

a more detailed visualization of the correlations between strains see Supp. Fig. S1. Also, note that96

all genes used in this analysis were expressed at a minimal level across the strains (overall mean of97

5 TPM), so results do not include data from non-expressed genes.98

Figure 1: The first two principal components of each genomic feature across nine inbred mouse
strains. In all panels each point represents an individual mouse, and strain is indicated by color
as shown in the legend at the bottom of the figure. Three individuals per strain are shown. Each
panel is labeled with the data used to generate the PC plot. (A) Hepatocyte transcriptome - all
transcripts expressed in isolated hepatocytes. (B) DNA methylation - the percent methylation at
all CpG sites shared across all individuals. (C-F) Histone modifications - the peak heights of the
indicated histone modification for positions aligned across strains.

Chromatin state overview99

We used ChromHMM to identify 14 chromatin states composed of unique combinations of the100

four histone modifications (Fig. 2A). We calculated the enrichment of each state near predicted101

functional elements in the mouse liver (Fig. 2B, Supp. Fig. S2), and correlated the presence of each102

state with gene expression both across genes and across the inbred strains (Fig. 2C).103

Figure 2: Overview of chromatin state composition, genomic distribution, and association with
expression. (A) Emission probabilities for each histone modification in each chromatin state. Blue
indicates the absence of the histone modification, and red indicates the presence of the modification.
(B) The distribution of each state around functional elements in the genome. Red indicates that the
state is enriched near the annotated functional element. Blue indicates that the state is depleted near
the annotated functional element. Rows were scaled to run between 0 and 1 for ease of visualization.
Abbreviations are as follows: Enh. = enhancer, Tsd = distal to the transcription start site, Tsp
= proximal to the transcription start site; Hetero. = heterochromatin; FR = flanking region. (C)
The association between chromatin state variation and gene expression. Bars are colored based on
the size and direction the state’s association with expression. Red/blue bars show the associations
of chromatin state with gene expression across strains. Blue-gray bars show the associations of
chromatin state with gene expression across genes. (D) Plausible annotations for each state based
on genomic enrichments and association with gene expression. The numbers in parentheses indicate
the percent of the genome that was assigned to each state. Repress. = repressor.

To associate chromatin state with expression across transcripts (Fig. 2C blue-gray bars), we104

calculated the proportion of each gene body that was occupied by each state in each inbred strain.105

We then fit a linear model to associate the proportion of each chromatin state with the amount of106

transcription (Methods). We did this separately in each strain. Some chromatin states, such as107
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State 1 were more abundant in highly expressed genes, whereas other states, such as State 13, were108

more abundant in lowly expressed genes.109

We compared this correlation to the correlation between chromatin state and gene expression across110

strains (Fig. 2C red/blue bars) (Methods). To do this, we normalized the expression of each111

transcript and the proportion of each chromatin state across strains (Methods). We then fit a linear112

model to estimate whether the proportion of each state varying across strains was associated with113

gene expression. For any given transcript, strains with greater proportions of State 1 had higher114

expression than strains with lower proportions of State 1. Through this calculation, we can associate115

strain variation in chromatin state with strain variation in gene expression.116

In Figure 2, the states are ordered by their association with gene expression across strains, which117

helps illustrate several patterns. Overall, states that were associated with increased expression across118

transcripts were also associated with increased expression when varying across strains. The state119

with the largest negative association with gene expression across strains, State 14, was the absence120

of all measured modifications. Other states associated with reduced gene expression contained the121

repressive mark H3K27me3. The states with the largest positive correlations with gene expression all122

had some combination of the activating marks H3K4me3, H3K4me1, and H3K27ac. The repressive123

mark was less commonly seen in these activating states.124

We used the functional element enrichments to assign putative annotations to each of the 14125

chromatin states (Fig. 2D). Except for State 14, all states were enriched around at least one126

of the predicted functional elements in mouse liver (Fig. 2B). Where there was more than one127

obvious enrichment for the state, we used our own associations with gene expression to narrow down128

which regulatory label we assigned each state. The enrichments of these states largely matched129

the associations we saw between each state and gene expression (Fig. 2C). For example, State 1,130

which was enriched around strong enhancers, was the state that was most strongly correlated with131

increased expression both across genes, and across strains. Likewise, States 2-4 were all enriched132

around active enhancers or promoters, and were all correlated with increased expression overall.133

At the other end of the spectrum, state 13 was enriched around polycomb repressor marks, as we134

would expect because it was defined by presence of H3K27me3, which is associated with polycomb135
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repression. This state was also correlated with reduced expression both across genes and across136

strains.137

Many of the states with weaker associations with gene expression, both positive and negative were138

most enriched around bivalent promoters. This suggests that the bivalent promoter class may139

represent a diverse array of functional elements with varied effects on gene expression, and that140

more detailed experiments investigating the relationship between these states and gene expression141

could potentially identify novel chromatin states influencing expression in these cells.142

DNA methylation overview143

To investigate the variation in DNA methylation across the inbred strains, we examined both144

strain-specific CpG sites and strain-specific methylation values. We defined a strain-specific CpG145

site as one that was present in all individuals in at least one strain and absent in all individuals in146

at least one other strain.147

Roughly 17.8% of all CpG sites were strain-specific ranging from 16% to 19% across the chromosomes.148

Strain-specific CpG sites were more commonly present in CAST, PWK, and B6 compared to the149

other strains (Fig. 3A).150

Figure 3: Overview of strain-specific CpG sites. (A) Boxes show proportion of strain-specific CpG
sites that are present in each strain. Boxes are colored by official strain colors for ease of visualization.
Short names for strains are indicated below each box. (B) The log10(Fold Enrichment) of CpG sites
shared across all strains (green) and those that are strain-specific (purple). (C) A comparison of
enrichments between CpG sites that are shared across all strains and those that are strain-specific.
Bars above 1 show where strain-specific CpGs were more enriched than shared CpGs. Bars below 1
indicate where strain-specific CpGs were less enriched than shared CpGs. The vertical line marks
where shared and strain-specific CpGs were equally enriched. Abbreviations are as follows: FR -
flanking region; Tsp - transcription start site proximal; Tsd - transcription start site distal, Hetero. -
heterochromatin; Enh. - enhancer.

CpG sites that were shared across all strains were enriched around genomic features such as CpG151

islands and promoters (Methods) (Fig. 3B green). Strain-specific CpG sites were also enriched152

around CpG islands and promoters (Fig. 3B purple). However, relative to the CpG sites found153

in all strains, the strain-specific CpG sites were more strongly enriched specifically in enhancers,154

especially TSS-distal poised enhancers and weak enhancers (Fig. 3C). Relative to the CpG sites155

common across all strains, strain-specific sites were depleted in promoter regions and CpG islands156
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(Fig. 3C) suggesting that variation in DNA methylation across strains primarily occurs in enhancers157

that fine-tune gene expression levels rather than in promoters which might result in genes being158

turned on or off.159

Spatial distribution of epigenetic modifications around gene bodies160

In addition to looking for enrichment of chromatin states and CpG sites near annotated functional161

elements, we characterized the fine-grained spatial distribution of these features around gene bodies162

by normalizing genomic positions to run from 0 at the TSS to 1 at the TES (See Methods) (Fig. 4)163

Figure 4: Relative abundance of chromatin states and methylated DNA. (A) Each panel shows the
abundance of a single chromatin state relative to gene TSS and TES. The y-axis in each panel is
the percent of genes containing the state. Each panel has an independent y-axis to better show
the shape of each curve. The x-axis is the relative gene position. The TSS and TES are marked
as vertical gray dashed lines. (B) The same data shown in panel A, but with all states overlayed
onto a single set of axes to show the relative abundance of the states. (C) The density of CpG
sites relative to the gene body. The y-axis shows the inverse inter-CpG distance in base pairs. The
density is highest near the TSS. CpG sites are less dense within the gene body and in the intergenic
space. (D) Percent methylation relative to the gene body. The y-axis shows the median percent
methylation at CpG sites, and the x-axis shows relative gene position. CpG sites near the TSS are
unmethylated relative to intragenic sites and to sites just upstream and downstream of the gene
bodies. In both C and D standard error is shown as a blue envelope around the mean; however, the
standard error is so small that it is not visible in the figure.

The spatial patterns of the individual chromatin states are shown in (Fig. 4A), and an overlay of all164

states together (Fig. 4B) emphasizes the difference in abundance between the most abundant states165

(States 1, 3, and 14), and the remaining states, which were relatively rare.166

Each chromatin state had a characteristic distribution pattern across the gene body. For example,167

State 14, which was characterized by the absence of all measured histone modifications, was strongly168

depleted near the TSS, indicating that this region is commonly subject to the histone modifications169

we measured here. It should be noted that this pattern is independent of the global enrichment170

patterns shown in Figure 2. Although state 14 is generally depleted in gene bodies relative to171

intergenic regions, it is especially depleted at the TSS. In contrast, States 1 and 3 were both relatively172

abundant at the TSS. State 3 was very narrowly concentrated right at the TSS, consistent with its173

annotation as an active promoter (Fig. 2). State 1 on the other hand, was especially enriched just174

upstream of the TSS, consistent with its annotation of a TSS-proximal strong enhancer. State 2,175
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was depleted near the TSS, but enriched within the gene body, consistent with its annotation of a176

TSS-distal enhancer.177

States with weaker associations to expression (indicated by grayer shades in Fig. 4) were of lower178

abundance, but had distinct distribution patterns around the gene body suggesting the possibility179

of distinct functional roles in the regulation of gene expression. These abundance patterns were not180

different across the strains (Supp. Fig. S3)181

DNA methylation showed similar characteristic variation in abundance (Fig. 4C-D). The TSS had182

densely packed CpG sites relative to the gene body (Fig. 4C). As expected, the median CpG site183

near the TSS was consistently hypomethylated relative to the median CpG site (Fig. 4D). All genes184

used in this analysis were expressed and thus had some degree of hypomethylation. There were also185

no large-scale differences in CpG distribution or percent methylation across strains (Supp. Fig. S4).186

Spatially resolved associations with gene expression187

The distinct spatial distributions of the chromatin states and methylated CpG sites around the188

gene body raised the question as to whether the associations of these states with gene expression189

could also be spatially resolved. To investigate this possibility we tested the association between190

gene expression and both chromatin state and DNA methylation using spatially resolved models191

(Methods). We tested the association of each chromatin state with expression across genes within192

hepatocytes (Fig. 5 left column) and the association of each chromatin state with the variation in193

gene expression across strains (Fig. 5 middle column).194

Figure 5: Associations of chromatin states with gene expression. Each column shows the association
of each chromatin state with gene expression in a different experimental context as labeled. Effects
shown are β coefficients from equation 1. The y-axes vary across each row to emphasize the shape
of each effect, so y-axis labels indicate only positive and negative effects. Colored areas show the
95% confidence interval around each estimate. The final column shows the annotation of each state
for comparison with its association with gene expression. All x-axes show the relative position along
the gene body running from just upstream of the TSS to just downstream of the TES. Vertical gray
dashed lines mark the TSS and TES in all panels.

All chromatin states demonstrated spatially dependent associations with gene expression within195

hepatocytes. Figure 5 shows how these associations are distributed across the states and across the196

gene bodies. For many of the states, the associations with expression were concentrated at or near197
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the TSS, while in the other states associations were seen across the whole gene. The direction of198

the coefficients matched the overall associations of each state seen previously (Fig. 2), but here we199

see the effects in finer resolution. For example, State 3 was positively correlated overall with gene200

expression (Fig. 2C), but in Figure 5 we see that this positive correlation is primarily limited to the201

region near the TSS, consistent with its annotation as a promoter state.202

Further, the spatial associations observed across genes (Fig. 5 left column) were largely recapitulated203

in the measurements across strains (Fig. 5 middle column). That is, chromatin states that either204

enhanced or suppressed gene expression across hepatocyte genes were similarly related to variation205

in expression across strains. This suggests that the genetic differences between strains modify206

chromatin activity in a manner similar to that used across genes. One notable exception was State207

6, whose presence up-regulated genes within hepatocytes, but was not associated with expression208

variation across strains.209

We also examined the association of percent DNA methylation with gene expression across genes and210

across strains (Fig. 6). As expected, methylation at the TSS was associated with lower expressed211

genes in hepatocytes (Fig. 6A). We did not detect an association between DNA methylation percent212

and gene expression across inbred strains, perhaps because there were too few strains to reliably213

estimate the coefficients (Fig. 6B).214

Figure 6: Association of DNA methylation wkth gene expression (A) across gene expression in
hepatocytes and (B) across inbred strains. The dark gray line shows the estimated effect of percent
DNA methylation on gene expression. The x-axis is normalized position along the gene body
running from the transcription start site (TSS) to the transcription end site (TES), marked with
vertical gray dashed lines. The horizontal solid black line indicates an association of 0. The shaded
gray area shows 95% confidence interval around the model fit.

Interactions between chromatin state and DNA methylation215

We investigated whether there was an interaction between DNA methylation and chromatin state216

by asking two questions. First, were CpG sites within different chromatin states methylated at217

different levels? And second, was DNA methylation within specific chromatin states differentially218

associated with gene expression across inbred mice? If DNA methylation essentially inactivates a219

region of DNA, methylation in a region identified as a repressor based on its chromatin state might220
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be expected to increase gene expression, whereas methylation in an active enhancer might decrease221

gene expression.222

To investigate these questions, we identified CpG sites within each of the 14 chromatin states. We223

calculated the average percent methylation of these sites, and the association of DNA methylation224

with gene expression for each set of sites (Methods). We treated missing CpG sites in individual225

strains as unmethylated.226

Although methylation patterns in all states followed roughly the same pattern of being unmethylated227

at the TSS and methylated within the gene body, values ranged widely across the states from State228

3 with a mean of 27% methylated DNA intragenically, to State 14 with 83% methylated DNA229

intragenically. Again, these differential levels of methylation within these states are consistent with230

the state annotations. State 3 was annotated as an active promoter, and we would expect DNA231

methylation in this state to be low. State 14 has no histone modifications and is not expected to be232

transcriptionally active, which is consistent with high levels of DNA methylation.233

DNA methylation within each chromatin state was differentially correlated with gene expression234

(Supp. Fig. S5). DNA methylation in State 3, the active promoter state, was associated with235

decreased gene expression, suggesting that DNA methylation in this state deactivated the active236

promoter state. Overall, the repressor state, State 13, was negatively associated with gene expression.237

However, DNA methylation in this state was positively associated with gene expression, suggesting238

that this repressive state can be inactivated by DNA methylation.239

Imputed chromatin state was associated with gene expression in DO mice240

Thus far, we have shown correlations between gene expression and epigenetic features in inbred241

mice. We were also interested in whether chromatin state and DNA methylation were associated242

with gene expression in an outbred mouse population. Although we did not measure epigenetic243

modifications directly in an outbred population, we had liver gene expression from a previously244

published population of diversity outbred mice (Tyler et al., 2017). Inheritance of chromatin245

state and DNA methylation is complex (Rintisch et al., 2014); however there is evidence that246

the heritability for both epigenetic features is high (Fraga et al., 2005; Villicaña and Bell, 2021)247

suggesting the possibility of imputing epigenetic features from local genotype into the DO mice.248
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Even with imperfect estimates of epigenetic features in the outbred mice, a common pattern of249

association between outbred and inbred mice would support the idea that inherited variance in250

epigenetic features contributes to inherited variation in gene expression across genetically distinct251

individuals.252

We imputed chromatin state, DNA methylation, and SNPs into the DO population (Methods).253

Because any feature imputed from haplotype will be correlated with anything that haplotype is254

correlated with, we performed permutations that shuffled the relationship between haplotype and255

chromatin state (Methods). The resulting p-value distributions of each genomic feature suggested256

that each imputed feature was significantly associated with gene expression in the DO beyond the257

effects of the imputation alone (Supp. Fig. S6).258

We then tested the association between each imputed chromatin state, SNP, or CpG site with gene259

expression in the DO. We tested each chromatin state independently. The standard method for260

testing associations is to include independent variables for all alleles (or chromatin states) in a single261

linear model. However, because there are varying numbers of predictor states across modalities262

(eight haplotypes, 14 chromatin states, three DNA methylation values, and two SNPs), variance263

explained across the modalities is not comparable unless the degrees of freedom are equal for all264

tests. Thus, for all features, we tested only a single haplotype, chromatin state, etc. versus all other265

possibilities in each model.266

Figure 7 compares the variance explained by individual haplotypes with that explained by any267

individual chromatin state, CpG site, or SNP. All imputed features–individual chromatin states268

(mean 14%), DNA methylation (mean 14%), and SNPs (mean 13%)–explained more variance in gene269

expression than individual haplotypes (mean 11%) (Fig. 7A). This suggests that any given chromatin270

state, CpG site, or SNP carries more functional information than any individual haplotype, which271

is primarily a measurement of ancestry.272

Figure 7B shows the maximum variance explained by each genomic feature for each transcript in273

the transcriptome. Dots above the line indicate transcripts for which the imputed genomic feature274

explained more variance than haplotype. Dots below the line indicate transcripts for which the275

imputed genomic feature explained less variance than haplotype. Individual haplotype explained less276
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variance than any other genomic feature for the majority of transcripts. supporting the hypothesis277

that all these features carry heritable information that potentially regulates gene expression in this278

genetically diverse population.279

To maximize power to estimate associations between epigenetic states and gene expression, we used280

all animals in the DO population and regressed out the effects of sex and diet from all variables281

before testing for associations. However, because the inbred animals used in this study were females282

maintained on a chow diet, it is possible that variation in either sex or diet in the DO population283

could affect the results. To test whether sex or diet had any effect on the associations between284

epigenetic features and gene expression, we performed all tests using only females, and again only285

with chow-fed animals. Results were similar across these subsets, and any differences in means were286

within a fraction of a standard deviation of the distributions (Supp. Fig. S7).287

Figure 7: Comparison of the variance explained in DO gene expression by four genomic features:
haplotype (Hap.) chromatin state (Chrom.), local SNP genotype (SNP), and local imputed DNA
methylation status (DM). A. Distributions of gene expression variance explained by each feature. B.
Direct comparisons of variance explained by local haplotype, and each of the other genomic features.
Blue lines show y = x. Each point is a single transcript.

In addition to calculating overall associations, we calculated position-based associations between288

each epigenetic feature and gene expression (Fig. 5 right column, and Fig. 6C). The associations289

in the DO mice largely matched those seen in the inbred mice for both chromatin state and DNA290

methylation. Even though DNA methylation showed no association with gene expression across291

strains in the inbred mice, there was a weak, but significant association with gene expression in the292

DO mice. This may be due to the increased power to detect effects in the 378 DO mice relative to293

the 9 inbred strains.294

Hypothesis generation for cis-regulatory regions295

By aligning associations with gene expression from the DO mice with inbred epigenetic features, we296

can generate hypotheses about heritable cis-regulatory regions in these mice. In particular, for any297

gene whose variance was explained at least as well by an imputed feature as by haplotype, there is298

the possibility that the imputed feature marks a cis-regulatory element. This occurrence provides299

an opportunity to annotate novel functional elements in the mouse genome, or provide supportive300
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evidence of previously predicted functional elements. As an example, we investigated the gene Pkd2301

(Fig. 8). This gene had a strong local eQTL (LOD = 144.8) that had been previously identified302

(Gatti et al., 2017; Chick et al., 2016), and large amounts of variance explained (R2 = 0.6) by both303

chromatin state and SNPs (Fig. 8A).304

WSB and PWK were low-expressing strains for Pkd2, and the remaining strains had higher expression305

(Fig. 8F). The haplotype effects in the DO mirror this pattern with the CAST allele showing an306

especially high association with increased gene expression (Fig. 8E). Figure 8B, C, and D show307

chromatin state, SNP genotype, and DNA methylation state along the body of Pkd2 respectively.308

Panel A shows the association of each of the imputed features with gene expression in the DO. The309

detailed view of this gene identified two regions marked by gray arrows in panel A. One is at the310

TSS and the immediately surrounding area, and the other is just downstream of the TSS.311

Figure 8: Example of epigenetic states and imputation results for a single gene, Pkd2. The legend
for each panel is displayed to its right. (A) The variance in DO gene expression explained at each
position along the gene body by each of the imputed genomic features: SNPs - red X’s, Chromatin
State - blue plus signs, and Percent Methylation - green circles. The horizontal dashed line shows
the maximum variance explained by any individual haplotype (in this case CAST). For reference,
the arrow below this panel runs from the TSS of Pkd2 (vertical bar) to the TES (arrow head) and
shows the direction of transcription. The gray arrows at the top indicate two regions of interest
where chromatin state explains height amounts of variance in gene expression. (B) The chromatin
states assigned to each 200 bp window in this gene for each inbred mouse strain. States are colored
by their association with gene expression in the inbred mice. Red indicates a positive association
with gene expression, and blue indicates a negative association. Each row shows the chromatin
states for a single inbred strain, which is indicated by the label on the left. (C) SNPs along the gene
body for each inbred strain. The reference genotype is shown in gray. SNPs are colored by genotype
as shown in the legend. (D) Percent DNA methylation for each inbred strain along the Pkd2 gene
body. Percentages are binned into 0% (blue) 50% (yellow) and 100% (red). (E) Association of
haplotype with expression of Pkd2 in the DO. Haplotype effects are colored by from which each
allele was derived. (F) Pkd2 expression levels across inbred mouse strains. For ease of comparison,
all panels B through F are shown in the same order as the haplotype effects.

Both chromatin state and SNPs in these two regions were strongly associated DO expression levels of312

Pkd2 (Fig. 8A). Comparing these regions marked in panel A to the chromatin states in panel B, we313

see that these two regions both have activating chromatin states in the high-expressing haplotypes314

and an absence of activating marks in the low-expressing haplotypes. We therefore hypothesized315

that these two regions are heritable cis-regulatory regions for Pkd2.316

The spatial patterns in the SNPs (Fig. 8C) partially mirror those in chromatin state (Fig. 8B).317
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SNPs underlying the more proximal enhancer region could potentially influence gene expression318

by altering local chromatin state. However, the more distal putative cis-regulatory region has no319

underlying SNPs, suggesting that there is an alternative mechanism for determining chromatin state320

at this location. Perhaps SNPs in the TSS region regulate chromatin state in both regions. For this321

particular gene, variation in DNA methylation (Fig. 8D) was not associated with Pkd2 expression322

in the DO.323

Discussion324

In this study we showed that the epigenetic landscape of hepatocytes varied widely across commonly325

used inbred mouse strains and that this variation was associated with strain differences in gene326

expression. We saw evidence that both chromatin state defined by combinatorial histone modifi-327

cations, as well as DNA methylation, were heritable mechanisms contributing to inter-individual328

variation in gene expression in mice. For DNA methylation, heritable variation was driven in part329

by strain-specific CpG sites. These CpG sites were enriched in enhancers, specifically, weak, strong,330

and poised enhancers distal to the TSS. Strain-specific CpG sites were depleted in promoter regions331

and CpG islands suggesting that these regions are more highly conserved across the inbred strains332

studied here and that enhancer regions are the most diverged. This divergence of CpG sites in333

enhancer regions results in small varation in gene expression across strains relative to potentially334

large or catastrophic changes that might be expected with loss or gain of CpG sites in promoter335

regions.336

The chromatin states we identified were represented by combinations of histone modifications337

that were enriched around previously predicted chromatin states in mouse liver. We used these338

enrichments to annotate each state, but noted that the annotations agreed both with relative339

abundance around the gene body and with associations to gene expression.340

Five of the 14 state we identified were enriched around bivalent promoters. Bivalent states are341

characterized by a combination of activating and repressing histone modifications (Voigt et al., 2013;342

Vastenhouw and Schier, 2012). Consistent with this definition, all five states included the repressive343

mark, H3K27me3, and at least one of the activating marks. All of these states were also most344

15

 Cold Spring Harbor Laboratory Press on August 7, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


abundant around the gene TSS, further supporting the annotation of promoter. Three of these345

states, States 10, 11, and 12, were associated with reduced gene expression both across genes and346

across strains, suggesting that these states marked genes that were poised for expression, but were347

not highly expressed. These associations were replicated in the DO for States 11 and 12, suggesting348

that these states represented a heritable form of gene expression regulation.349

Bivalent promoters are typically considered dynamic states that change over the course of differentia-350

tion and in response to external stimuli. These regulatory regions have been studied primarily in the351

context of development. They are abundant in undifferentiated cells, and are often resolved either to352

active promoters or to silenced promoters as the cells differentiate into their final state (Voigt et al.,353

2013; Vastenhouw and Schier, 2012). These promoters have also been shown to be important in the354

response to changes in the environment–their abundance increases in breast cancer cells in response355

to hypoxia (Prickaerts et al., 2016). It is therefore notable to see apparently heritable bivalent356

promoters in differentiated hepatocytes. Genes marked by State 11 were enriched for mesodermal357

cell differentiation and Notch signaling suggesting a developmental role for this state. Similarly,358

genes marked by State 12 were enriched for blood vessel and endothelial morphogenesis as well as359

Wnt signaling.360

That we identified these states in differentiated hepatocytes may indicate that a subset of develop-361

mental genes retain the ability to be activated under certain circumstances, such as during liver362

regeneration in response to injury. Both Wnt signaling and Notch signaling are involved in wound363

repair (Shi et al., 2015; Chigurupati et al., 2007; Whyte et al., 2012) and liver regeneration (Yue364

et al., 2018; Hu and Monga, 2021; Thompson and Monga, 2007). The observation that these states365

likely represent a heritable form of cis-regulation is intriguing and may suggest heritable variation366

in response to liver injury or convergent evolution of regeneration pathways.367

State 5 was also annotated as a bivalent promoter, but the evidence for this annotation was less368

clear than for the other states with this annotation. State 5 was enriched primarily around predicted369

bivalent promoters in mouse liver (Fig. 2). However, it also included the presence of H3K27ac, which370

is typically associated with active enhancers, rather than inactive bivalent promoters (Creyghton371

et al., 2010; Voigt et al., 2013). The association of State 5 with gene expression was also inconsistent.372

This state was associated with lower gene expression in hepatocytes, but with higher gene expression373
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when looking across strains. That is, genes with State 5 were more lowly expressed than other374

hepatocyte genes, but for any given gene, strains with State 5 had higher expression than strains375

with other states in the same position.376

The association of State 5 with reduced expression within hepatocytes is consistent with the377

annotation of bivalent promoter. Genes marked with this state were enriched for vascular development378

and Wnt signaling, further supporting the annotation. When positions marked with State 5 varied379

across strains, the most common alternate state at these positions was State 12, another bivalent380

promoter. Thus, this group of genes in general was down-regulated relative to other genes. However,381

our results suggest that State 5 was associated with less severe down-regulation when compared382

with State 12, resulting in an apparent up-regulation when looking across strains. It is also possible383

that the inconsistent results observed for State 5 indicate that it was a mixture of State 12 and384

another state. State 5 had a very similar abundance distribution, effect size distribution, and GO385

term enrichments to State 12. As a whole, the group of states annotated as bivalent promoters386

raise the intriguing possibility of identifying new modes of expression regulation through histone387

modification. Although these five states all recieved the same annotation, each had a unique pattern388

of distribution around the gene body and association with gene expression suggesting that each389

represents a different functional element in the mouse genome.390

The diversity in the associations with gene expression observed across all 14 chromatin states391

highlights the importance of analyzing combinatorial states as opposed to individual histone392

modifications. The three states with the largest positive associations with transcription each had a393

distinct combination of the three activating histone marks: H3K4me1, H3K4me3, and H3K27ac.394

And although all three states were associated with increased gene expression, each had a distinct395

spatial distribution. This variation in spatial distribution was mirrored in the spatial associations396

with transcription. The distinct patterns among these states would not be detectable without397

analysis of the histone modifications in combination. These results highlight the complexity of the398

histone code and the importance of analyzing combinatorial states.399

State 9 further illustrates the importance of the combinatorial approach. State 9 was defined as the400

presence of H3K4me3 and the absence of all other marks. H3K4me3 is most frequently associated401

with increased transcriptional activity (Bernstein et al., 2005; Schneider et al., 2004; Santos-Rosa402
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et al., 2002; Wysocka et al., 2006), so the association of state 9 with reduced transcription is a403

deviation from the dominant paradigm. This state was enriched around predicted poised enhancers404

in mouse liver data, and genes marked with this state were enriched for functions such as stress405

response, DNA damage repair, and ncRNA processing. Taken together, these results suggest that406

this state may be used to regulate subsets of genes involved in responses to environmental stimuli.407

They further demonstrate that the relationship between H3K4me3 and gene expression is more408

complex that simple activation.409

The merging of DO expression quantitative trait loci with inbred chromatin state maps offers a410

potential method to identify cis-regulatory regions. The Pkd2 example illustrates how this could be411

done. Given that there is a cis-eQTL at this locus, and that imputed chromatin state explained a412

large amount of variance in DO gene expression, it made sense to look at the patterns of genomic413

features around this gene. The patterns of chromatin state and SNPs in the gene body pointed to414

possible molecular mechanisms for the observed eQTL. Both the presence of activating chromatin415

states and their breadth correlated with gene expression, suggesting the presence of local regulatory416

regions. The CpG sites in and arround these putative regulatory regions are unmethylated across417

all strains, further supporting the hypothesis chromatin state in these regions is actively regulating418

transcription. Validation of these regions is beyond the scope of this study, but our results suggest419

that combining DO eQTL data with inbred epigenetic data may serve as an important resource in420

identifying putative regulatory regions.421

The discordance between the patterns of chromatin state and SNPs in this gene may also point to422

potentially novel regulatory mechanisms. Variation in chromatin state at the more distal enhancer423

is present in the absence of local SNPs. This suggests that the presence of the distal enhancer is424

determined by another mechanism, perhaps SNPs acting in trans to this region, or local variation425

that was not measured by SNP genotyping, e.g. indels. Genetic variation located at a distance426

from the putative enhancer sites could also potentially alter the 3D configuration of the genome427

resulting in variable access of transcription factors to the enhancer.428

Broadly, local variation in chromatin state, DNA methylation, and individual SNPs, were all more429

highly correlated with DO gene expression than individual haplotypes were. Individual haplotypes430

are a measure of ancestry, whereas chromatin state, DNA methylation, and SNPs all potentially431
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functionally related to gene expression. Two haplotypes that are not identical by descent may share432

a repressor state that is functionally associated with reduced gene expression. These observations433

raise the possibility of shifting toward mapping traits with functional elements of the genome rather434

than ancestral allele labels. Many researchers already use SNPs in mapping rather than haplotype,435

but the set of functional features could be expanded further to include DNA methylation and436

histone modifications. By combining the power of haplotype mapping with the high resolution and437

mechanistic insights of other genomic and epigenomic features, we can begin to build mechanistic438

hypotheses that link genetic variation to variation in gene expression and physiology.439

Materials and Methods440

Ethics Statement441

All animal procedures followed Association for Assessment and Accreditation of Laboratory Animal442

Care guidelines and were approved by Institutional Animal Care and Use Committee (The Jackson443

Laboratory, Protocol AUS #04008).444

Inbred Mice445

Three female mice from each of nine inbred strains were used. Eight of these strains (129S1/SvImJ,446

A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) are the eight447

strains that served as founders of the Collaborative Cross/Diversity Outbred mice (Chesler et al.,448

2008). The ninth strain, DBA/2J, will facilitate the interpretation of existing and forthcoming449

genetic mapping data obtained from the BxD recombinant inbred strain panel. Samples were450

harvested from the mice at 12 weeks of age.451

Liver perfusion452

To purify hepatocytes from the liver cell population, the mouse livers were perfused with 87453

CDU/mL Liberase collagenase with 0.02% CaCl2 in Leffert’s buffer to digest the liver into a454

single-cell suspension, and then isolated using centrifugation.455

We aliquoted 5 × 106 cells for each RNA-seq and bisulfite sequencing, and the rest were cross-linked456
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for ChIP assays. Both aliquots were spun down at 200 rpm for 5 min, and resuspended in 1200µL457

RTL+BME (for RNA-seq) or frozen as a cell pellet in liquid nitrogen (for bisulfite sequencing). In458

the sample for ChIP-seq, protein complexes were cross-linked to DNA using 37% formaldehyde in459

methanol. All cell samples were stored at -80°C until used (See Supplemental Methods for more460

detail).461

Hepatocyte histone binding and gene expression assays462

Hepatocyte samples were used in the following assays:463

1. RNA-seq to quantify mRNA and long non-coding RNA expression, with approximately 30464

million reads per sample.465

2. Reduced-representation bisulfate sequencing to identify methylation states of approximately466

two million CpG sites in the genome. The average read depth was 20-30x.467

3. Chromatin immunoprecipitation and sequencing to assess binding of the following histone468

marks:469

a. H3K4me3 to map active promoters470

b. H3K4me1 to identify active and poised enhancers471

c. H3K27me3 to identify polycomb repression472

d. H3K27ac, to identify actively used enhancers473

e. A negative control (input chromatin)474

Samples were sequenced with ∼ 40 million reads per sample.475

The samples for RNA-seq in RTL+BME buffer were sent to The Jackson Laboratory Gene Expression476

Service for RNA extraction and library synthesis.477

Histone chromatin immunoprecipitation assays478

After extraction, hepatocyte cells were lysed to release the nuclei, spun down, and resuspended in479

130ul MNase buffer with 1mM PMSF (Sigma, #78830) and 1x protease inhibitor cocktail (Roche)480

to prevent histone protein degradation. The samples were then digested with 15U of micrococcal481

nuclease (MNase), which digests the exposed DNA, but leaves the nucleosome-bound DNA intact.482

We confirmed digestion of nucleosomes into 150bp fragments with agarose gel. The digestion reaction483
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was stopped with EDTA and samples were used immediately in the ChIP assay. The ChIP assay was484

performed with Dynabead Protein G beads and histone antibodies (H3K4me3: Millipore #07-473,485

H3K4me1: Millipore #07-436, H3K27me3: Millipore #07-449, H4K27ac: abcam ab4729). After486

binding to antibodies, samples were washed to remove unbound chromatin and then eluted with487

high-salt buffer and Proteinase K to digest protein away from DNA-protein complexes. The DNA488

was purified using the Qiagen PCR purification kit. Quantification was performed using the Qubit489

quantification system (See Supplemental Methods).490

Diversity Outbred mice491

We used previously published data from a population of 478 diversity outbred (DO) mice (Svenson492

et al., 2012). DO mice (JAX:DO) are available from The Jackson Laboratory (Bar Harbor, ME)493

(stock number 009376). The DO population included males and females from DO generations four494

through 11. Mice were randomly assigned to either a chow diet (6% fat by weight, LabDiet 5K52,495

LabDiet, Scott Distributing, Hudson, NH), or a high-fat, high-sucrose (HF/HS) diet (45% fat, 40%496

carbohydrates, and 15% protein) (Envigo Teklad TD.08811, Envigo, Madison, WI). Mice were497

maintained on this diet for 26 weeks.498

Genotyping499

All DO mice were genotyped as described in Svenson et al. (2012) (Svenson et al., 2012) using500

the Mouse Universal Genotyping Array (MUGA) (7854 markers), and the MegaMUGA (77,642501

markers) (GeneSeek, Lincoln, NE). All animal procedures were approved by the Animal Care and502

Use Committee at The Jackson Laboratory (Animal Use Summary # 06006).503

Founder haplotypes were inferred from SNPs using a Hidden Markov Model as described in Gatti504

et al. (2014). The MUGA and MegaMUGA arrays were merged to create a final set of evenly spaced505

64,000 interpolated markers.506

Tissue collection and gene expression507

At euthenasia, whole livers were collected and gene expression was measured using RNA-seq as508

described perviously (Chick et al., 2016; Tyler et al., 2017). Briefly, hepatocyte RNA was isolated509
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using the TRIzol Plus RNA extraction kit (Life Technologies), and 100-bp single-end reads were510

generated on the Illumina HiSeq 2000.511

Data Processing512

Sequence processing513

The raw sequencing data from both RNA-seq and ChIP-seq were put through the quality control514

program FastQC (0.11.5) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and515

duplicate sequences were removed before downstream analysis.516

Transcript quantification517

Transcript sequences were aligned to strain-specific pseudo-genomes (Chick et al., 2016), which518

integrate SNPs and indels from each strain based on the GRCm38 mouse genome build. The519

B6 samples were aligned directly to the reference mouse genome. The pseudogenomes were520

created using g2gtools (http://churchill-lab.github.io/g2gtools/#overview). We used EMASE521

(https://github.com/churchill-lab/emase) (Raghupathy et al., 2018) to quantify the gene expression522

counts and DESeq2 vst transformation (Love et al., 2014) to normalize the gene expression data.523

We filtered out transcripts with less than 1 CPM in two or more replicates.524

ChIP-seq quantification525

We used MACS 1.4.2 (Zhang et al., 2008) to identify peaks in the ChIP-seq sequencing data, with526

a significance threshold of p ≤ 10−5. In order to compare peaks across strains, we converted the527

MACS output peak coordinates to common B6 coordinates using g2g tools.528

Quantifying DNA methylation529

RRBS data were processed using a Bismark-based pipeline modified from Thompson et al. (2018).530

The pipeline uses Trim Galore! 0.6.3 https://www.bioinformatics.babraham.ac.uk/projects/tri531

m_galore/ for QC, followed by the trimRRBSdiversityAdaptCustomers.py script from NuGen for532

trimming the diversity adapters. This script is available at: https://github.com/nugentechnologies533

/NuMetRRBS534
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All samples had comparable quality levels and no outstanding flags. Total number of reads was535

45-90 million, with an average read length of about 50 bp. Quality scores were mostly above 30536

(including error bars), with the average above 38. Duplication level was reduced to < 2 for about537

95% of the sequences.538

High quality reads were aligned to a custom strain pseudogenomes, using Bowtie 2 (Langmead and539

Salzberg, 2012) as implemented in Bismark 0.22 (Krueger and Andrews, 2011). The pseudogenomes540

were created by incorporating strain-specific SNPs and indels into the reference genome using541

g2gtools, allowing a more precise characterization of methylation patterns. Bismark methylation542

extractor tool was then used for creating a BED file of estimated methylation proportions for each543

animal, which was then translated to the reference mouse genome (GRCm38) coordinates using544

g2gtools. Unlike other liftOver tools, g2gtools does not throw away alignments that land on indel545

regions. B6 samples were aligned directly to the reference mouse genome (mm10).546

Analysis of histone modifications547

Identification of chromatin states548

We used ChromHMM (1.22) (Ernst and Kellis, 2017) to identify chromatin states, which are unique549

combinations of the four chromatin modifications, for example, one state could consist of high levels550

of both H3K4me3 and H3K4me1, and low levels of the other two modifications. We conducted all551

subsequent analyses at the level of the chromatin state.552

Prior to running ChromHMM, we converted the BAM files that had been aligned to the B6 genome553

as described above to BED files using the BEDTools function bamtobed (Quinlan and Hall, 2010).554

We then binarized the BED files using the BinarizeBed function in ChromHMM with default555

parameters.556

We calculated chromatin states for all numbers of states between four and 16, which is the maximum557

number of states possible with four binary chromatin modifications (2n). We ran all mouse strains558

together in the same model as if they were different cell types in a standard run of ChromHMM.559

To ensure we were analyzing the most biologically meaningful chromatin states, we aligned states560

across all models of four to 16 states by assigning each to one of the sixteen possible binary states561
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using an emissions probability of 0.3 as the threshold for presence/absence of the histone mark.562

This threshold was used for comparison purposes only, and produced the most stable state estimates563

between models. We then investigated the stability of three features across all states: the emissions564

probabilities (Supp. Fig. S8), the abundance of each state across transcribed genes (Supp. Fig. S9),565

and the associations of each state with transcription (Supp. Fig. S10). Methods for each of these566

analyses are described separately below. All measures were consistent across all models, but the567

14-state model was characterized by a wide range of relatively abundant states with relatively strong568

associations with expression. We used this model for all subsequent analyses. For more details on569

how the different models were compared, see Supplemental Methods.570

Genome distribution of chromatin states571

We investigated genomic distributions of chromatin states using the ChromHMM function Over-572

lapEnrichment to calculate enrichment of each state around known functional elements in the mouse573

genome. We analyzed the following features:574

• Predicted Liver Chromatin States - We downloaded predicted liver chromatin states through575

the UCSC Genome Browser on February 14, 2023 (http://genome.ucsc.edu/cgi-bin/hg576

Tables). We selected Expression and Regulation -> Chromatin State -> cHMM liver P0577

(encode3RenChromHmmLiverP0) under the mouse mm10 assembly. These data include578

chromatin state annotations for mouse liver on post-natal day 0. The annotations were based579

on ChIP-seq measurements of eight histone modifications: H3K27ac, H3K27me3, H3K4me3,580

H3K4me2, H3K4me1, H3K9me3, H3K9ac, and H3K36me3. ChromHMM was used to identify581

15 chromatin states that were each annotated with a putative function based in the literature.582

• CpG Islands - Annotations of CpG islands in the mouse genome were included with the release583

of ChromHMM.584

• Intergenic - Annotations of intergenic regions in the mouse genome were included with the585

release of ChromHMM.586
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Gene body distribution of chromatin states587

In addition to these enrichments around individual elements, we also calculated chromatin state588

abundance relative to the main anatomical features of a gene. For each transcribed gene, we589

normalized the base pair positions to the length of the gene such that the transcription start site590

(TSS) was fixed at 0, and the transcription end site (TES) was fixed at 1 taking into account the591

encoding strand of DNA. We also included 1000 bp upstream of the TSS and 1000 bp downstream592

of the TES, which were converted to values below 0 and above 1 respectively. To map chromatin593

states to the normalized positions, we binned the normalized positions into 42 bins running from594

-0.5 to 1.5. This range included some upstream and downstream regions around the gene body and595

gave us good resolution around 0 and 1. If a bin encompassed multiple positions in the gene, we596

assigned the mean value of the feature of interest to the bin. To avoid potential contamination from597

regulatory regions of nearby genes, we only included genes that were at least 2kb from their nearest598

neighbor, for a final set of 14,048 genes.599

Chromatin state and gene expression600

We calculated the association of each chromatin state with gene expression (Fig. 2C). We did this both601

across genes and across strains. The across-gene analysis identified states that are associated with602

high expression and low expression within the hepatocytes. The across-strain analysis investigated603

whether variation in chromatin state across strains was associated with variation in gene expression604

across strains.605

For each transcribed gene, we calculated the proportion of the gene body that was assigned to each606

chromatin state. We then fit a linear model separately for each state to calculate the association of607

state proportion with gene expression:608

ye = βxs + ε (1)

where ye is the rank normal scores (Conover, 1999) of the full transcriptome in a single inbred strain,609

and xs is the rank normal proportion of each gene that was assigned to state s. We fit this model for610

each strain and each state to yield one β coefficient with a 95% confidence interval. We fit the strains611
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independently to better identify variation in chromatin state effects across strains. However, the612

effects were not different across strains (ANOVA p > 0.5), so we averaged the effects and confidence613

intervals across strains to yield one summary effect for each state. We further fit models for each614

state independently, rather than using multiple regression, because we were primarily interested in615

the marginal effects of each state for this study.616

To calculate the association of each chromatin state with gene expression across strains, we first617

standardized transcript abundance across strains for each transcript. We also standardized the618

proportion of each chromatin state for each gene across strains. We then fit the same linear model,619

where ye was a rank normal vector concatenating all standardized expression levels across all strains,620

and xs was a rank normal vector concatenating all standardized state proportions across all strains.621

We fit the model for each state independently yielding a β coefficient and 95% confidence interval622

for each state.623

In addition to calculating the association of state proportion across the full gene body with gene624

expression, we also performed the same calculations in a position-based manner (Fig. 5). To do this,625

we normalized the genomic positions of all chromatin states to run between 0 at the transcription626

start site (TSS) and 1 at the transcription end site (TES) as described above. In dividing chromatin627

state values into bins, we averaged all positions for each state that were contained in each bin. We628

fit the linear model described above for each positional bin thus creating position-based effect sizes629

for chromatin state on gene expression across genes and across strains.630

Analysis of DNA methylation631

Creation of DNA methylome632

We combined the DNA methylation data into a single methylome cataloging all unique methylated633

sites across all strains. For each site, we averaged the percent methylation across the three replicates634

in each strain. The final methylome contained 5,311,670 unique CpG sites across the genomes635

of all nine strains. Because methylated CpG sites can be fully methylated, unmethylated, or636

hemi-methylated, we rounded the average percent methylation at each site to the nearest 0, 50, or637

100%.638
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Decomposition of DNA methylome639

To calculate the DNA methylation similarity across individuals shown in Figure 1B we used the640

subset of the CpG sites that were shared across all strains at each B6 reference position. The641

resulting matrix contained individual mice in columns and shared methylation sites in rows. Each642

cell contained the measured level of DNA methylation at that position. We performed principal643

components analysis on this matrix.644

Strain-specific CpG sites645

In addition to the analysis of CpG sites that were shared across genes, we analyzed CpG sites that646

were strain-specific. We defined a strain-specific CpG site as one that was present in all members of647

at least one strain and absent in all members of at least one other strain.648

Distribution and methylation of CpG sites649

We used the enrichment function in ChromHMM described above to identify enrichment of CpG sites650

around functional elements (e.g. CpG islands, mouse liver enhancers, and mouse liver promoters).651

These features are described above in the section “Genome distribution of chromatin states.” We652

further performed position-based analyses of both CpG density and percent methylation similar to653

the position-based abundance analyses performed for chromatin states.654

To calculate overall CpG density relative to gene bodies, we calculated the inverse of the inter-CpG655

base pair distances within 1kb of each expressed gene. We then normalized the position of each656

CpG to reflect its position relative to the gene’s TSS (at 0) and its TES (at 1) as described above.657

We took the average of these values in each of 42 bins running from a relative position of -0.5 to 1.5658

Figure 4C shows the average inverse inter-CpG distance across all 42 bins. CpG sites were most659

densely packed near the TSS (relative gene position = 0) as expected.660

Figure 4D shows the average percent methylation in each of these bins, which was calculated in the661

same manner as above but we calculated the median percent methylation in each bin rather than662

the inverse inter-CpG distance. The figure shows that CpG sites tended to be unmethylated near663

the TSS as expected.664
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Association of DNA methylation with gene expression665

As with chromatin state, we assessed the association between DNA methylation and gene expression666

both across genes (Fig. 6A) and across strains (Fig. 6B). As with chromatin state, we binned the667

normalized CpG positions into 42 bins running from just upstream of the TSS to just downstream of668

the TES. We treated missing CpG sites in individual strains as unmethylated, as it is uncommon for669

non-CpG sites to be methylated. This allowed us to test strain-specific CpG sites and variation in670

DNA methylation percent simultaneously. We then fit the linear model shown in equation 1 where671

xs was the rank normal percent methylation either across genes or across strains in each position672

bin. Because the effect of DNA methylation on gene expression is well-known to be dependent on673

position, we only calculated a position-dependent association with expression. We did not calculate674

the association of percent methylation across the full gene with expression.675

Interactions between chromatin state and DNA methylation676

We repeated the above analyses for DNA methylation conditioned on each of the 14 chromatin states.677

To do this, we isolated all CpG sites that were contained in the genomic regions defined by each678

chromatin state. We then performed the above analysis on each subset of CpG sites independently.679

Imputation of genomic features in Diversity Outbred mice680

To assess the extent to which chromatin state and DNA methylation were associated with local681

expression QTLs, we imputed local chromatin state and DNA methylation into the population682

of diversity outbred (DO) mice. We compared the effects of the imputed epigenetic features to683

imputed SNPs and to local haplotype effects as measured in the DO.684

All imputations followed the same basic procedure: For each transcript, we identified the haplotype685

probabilities in the DO mice at the genetic marker nearest the gene transcription start site. This686

matrix held DO individuals in rows and DO founder haplotypes in columns (Supp. Fig. S11).687

For each transcript, we also generated a three-dimensional array representing the genomic features688

(chromatin state, DNA methylation status, or SNP genotype) derived from the DO founders. This689

array held DO founders in rows, feature state in columns, and genomic position in the third690

dimension. The feature state for chromatin consisted of states one through 14, for SNPs feature691
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state consisted of the genotypes A,C,G, and T.692

We then multiplied the haplotype probabilities by each genomic feature array to obtain the imputed693

genomic feature for each DO mouse. This final array held DO individuals in rows, the genomic694

feature in the second dimension, and genomic position in the third dimension (Supp. Fig. S11).695

This array is analagous to the genoprobs object in R/qtl2 (Broman et al., 2019). The genomic696

position dimension included all positions from 1 kb upstream of the TSS to 1 kb downstream of the697

TES for the given transcript. SNP data for the DO founders in mm10 coordinates were downloaded698

from the Sanger SNP database (Keane et al., 2011) on July 6, 2021.699

To calculate the association between each imputed genomic feature and gene expression in the700

DO population, we fit a linear model ye = βxs + ε where ye was DO gene expression of a single701

transcript, and xs was the imputed level of a single chromatin state at a single base pair position702

within the encoding gene of the transcript. Prior to fitting this model, we regressed sex and DO703

generation out from all variables so that they would not be included in the estimate of variance704

explained by each chromatin state.705

Testing each state separately is a bit artificial, since no single haplotype will explain as much variance706

as using all haplotypes together in a multiple regression. However, it was critical in this study to707

maintain a single degree of freedom across all features so that we could compare them. Otherwise708

haplotypes have seven degrees of freedom (df) at each location, chromatin states potentially have709

13 df, although in practice they typically have between two and four df, and both SNPs and DNA710

methylation have only one df. Thus, to compare the features, we tested only a single state at a time.711

From these linear models, we calculated the variance explained (R2) by each genomic feature at712

each position (Fig. 7), thereby relating gene expression in the DO to each position of the imputed713

feature in and around the gene body. We also kept the β coefficients to identify overall trends in714

positive or negative associations on gene expression for each genomic feature at each position (Fig.715

5C).716

Permutations717

Because any feature imputed from haplotype will be correlated with any feature that haplotype is718

correlated with, we performed permutations of the above statistics to assess whether each genomic719
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feature was significantly correlated with gene expression beyond the effect of the imputation itself.720

To do the permutations, we shuffled the strain labels on each genomic feature vector (chromatin721

states, DNA methylation percent, or SNPs). This randomized the association between haplotype722

and the assigned genomic feature while preserving the association between haplotype and gene723

expression. We then re-imputed the permuted features into the DO and performed the association724

tests on the randomized imputed values as described above.725

We performed 1000 permutations for each transcript retaining the R2 value from each permutation.726

We then calculated an empirical p-value for the R2 of each transcript based on these permutations.727

This was the number of times the permutations met or exceeded the observed R2 value divided by the728

total number of permutations. We then analyzed the empirical p-value distributions for uniformity.729

A uniform p-value distribution across the transcripts would suggest that the given genomic feature730

was not significantly associated with gene expression. An enrichment of small p-values, on the other731

hand, would suggest that there is a significant association between the imputed genomic feature732

and gene expression beyond that conferred by the imputation itself. The p-value distributions for733

all three genomic features were highly enriched for small p-values (all Kruskal-Wallis p < 2−16),734

suggesting that, although many individual imputed values were not significantly associated with735

gene expression, overall each genomic feature could be significantly associated with gene expression736

(Supp. Fig. S6).737
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