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Summary
Background Colorectal cancers are the fourth most diagnosed cancer and the second leading cancer in number of
deaths. Many clinical variables, pathological features, and genomic signatures are associated with patient risk, but
reliable patient stratification in the clinic remains a challenging task. Here we assess how image, clinical, and
genomic features can be combined to predict risk.

MethodsWe developed and evaluated integrative deep learning models combining formalin-fixed, paraffin-embedded
(FFPE) whole slide images (WSIs), clinical variables, and mutation signatures to stratify colon adenocarcinoma
(COAD) patients based on their risk of mortality. Our models were trained using a dataset of 108 patients from
The Cancer Genome Atlas (TCGA), and were externally validated on newly generated dataset from Wayne State
University (WSU) of 123 COAD patients and rectal adenocarcinoma (READ) patients in TCGA (N = 52).

Findings We first observe that deep learning models trained on FFPE WSIs of TCGA-COAD separate high-risk
(OS < 3 years, N = 38) and low-risk (OS > 5 years, N = 25) patients (AUC = 0.81 ± 0.08, 5 year survival
p < 0.0001, 5 year relative risk = 1.83 ± 0.04) though such models are less effective at predicting overall survival
(OS) for moderate-risk (3 years < OS < 5 years, N = 45) patients (5 year survival p-value = 0.5, 5 year relative
risk = 1.05 ± 0.09). We find that our integrative models combining WSIs, clinical variables, and mutation
signatures can improve patient stratification for moderate-risk patients (5 year survival p < 0.0001, 5 year relative
risk = 1.87 ± 0.07). Our integrative model combining image and clinical variables is also effective on an
independent pathology dataset (WSU-COAD, N = 123) generated by our team (5 year survival p < 0.0001, 5 year
relative risk = 1.52 ± 0.08), and the TCGA-READ data (5 year survival p < 0.0001, 5 year relative
risk = 1.18 ± 0.17). Our multicenter integrative image and clinical model trained on combined TCGA-COAD and
WSU-COAD is effective in predicting risk on TCGA-READ (5 year survival p < 0.0001, 5 year relative
risk = 1.82 ± 0.13) data. Pathologist review of image-based heatmaps suggests that nuclear size pleomorphism,
intense cellularity, and abnormal structures are associated with high-risk, while low-risk regions have more
regular and small cells. Quantitative analysis shows high cellularity, high ratios of tumor cells, large tumor nuclei,
and low immune infiltration are indicators of high-risk tiles.

Interpretation The improved stratification of colorectal cancer patients from our computational methods can be
beneficial for treatment plans and enrollment of patients in clinical trials.
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The funders had no roles in study design, data collection and analysis or preparation of the manuscript.
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Introduction
Stratification of colon adenocarcinoma patients is based
on standards established by the American Joint Com-
mittee on Cancer (AJCC) and Union for International
Cancer Control (UICC)1 and remains a challenging
clinical decision. Colon adenocarcinoma (COAD) has an
overall all-stages SEER 5-year survival of 63%,2,3 and risk
assessments impact decisions such as whether a patient
receives additional chemotherapy or is inducted into a
clinical trial. Tumor infiltrating lymphocytes (TIL)
quantifications have been shown to be informative in
recent years.4–6 Nevertheless, improvements in bio-
markers remain critical, either through incorporating
additional biomarkers or better use of currently identi-
fied markers,7–9 particularly for patients without a clear
indication of high/low risk.10,11 Clinical assessment of

these patients can be difficult, hampering decisions
about additional treatment, uptake of patients into
clinical-trials, and proactive disease surveillance.12,13

Therefore, automated computational models on patient
data, including histopathology images, can address
important needs in assessment and reproducibility of
cancer management decisions.

Deep learning models have achieved high accuracy
for detecting tumor regions14 and identifying cancer
subtypes15 from hematoxylin and eosin (H&E)-stained
whole slide images (WSIs). Such models have also been
able to predict several clinically relevant genetic features,
such as microsatellite instability (MSI)16 and mutation
status of key genes17–19 with moderate accuracy. Deep
learning models using WSIs have been studied to
stratify patients based on survival risk.20 However, these

Research in context

Evidence before this study
Prior to beginning this study in January 2021, we performed a
literature review of published articles on PubMed using the
keywords: “deep learning” AND “colorectal cancer” AND
“survival” OR “prognosis” AND “integrative model” OR
“multimodal”, without restrictions on date or language. Our
search did not reveal any research that had combined deep
learning-extracted pathological image features, clinical data,
and molecular features to stratify patients with colon
adenocarcinoma (COAD) based on their risk of mortality,
although individual data modality was reported to be
associated with patient outcome. A few papers had examined
only using pathological images to predict survival, without
external validation beyond The Cancer Genome Atlas (TCGA).
We hypothesized integrative models can improve patient
stratification, and investigated this research question.
Since then some articles have reported combining
pathological and clinical features, but these have done so at
the slide level, an approach that does not account for
intratumoral heterogeneity. We hypothesized and
investigated if integrative models that better account for
tumor heterogeneity and patient’s clinical context are more
effective for risk prediction. We also hypothesized that an
integrative deep learning model would be able to stratify
borderline patients.

Added value of this study
In this study, we developed tile-based integrative models
combining whole slide images (WSIs), clinical variables, and
mutation signatures to stratify COAD patients based on their
risk of mortality, and we externally validated the model on
newly generated patient datasets. Our integrative model
achieves patient stratification (5-year RR = 4.01 in TCGA)
comparable to prior state-of-the-art large-scale studies
trained on >5000 patients (Wulczyn, E. et al., 2020, RR = 3.35
and 2.7 on two validation sets), but we achieved this with
<300 patients.

Our models are trained using a dataset of 108 COAD patients
from TCGA, and are validated on an external cohort of 123
patients from Wayne State University (WSU-COAD) and 52
rectal adenocarcinoma patients from TCGA (TCGA-READ). In
the TCGA-COAD cohort, we observe that deep learning
models based only on WSI images accurately separate high-
risk (OS < 3 years, N = 38) from low-risk (OS > 5 years, N = 25)
patients (AUC = 0.81 ± 0.08, 5 year survival p < 0.0001, 5 year
relative risk = 1.83 ± 0.04).
Within the clinically challenging class of moderate risk
patients (3 years < OS < 5 years, N = 45), the image-only
model is not effective at distinguishing patients with higher
or lower risk (5 year survival p-value = 0.5, 5 year relative
risk = 1.05 ± 0.09). However, our integrative models
combining WSIs, clinical variables, and mutation signatures
improve patient stratification for these moderate-risk patients
(5 year survival p < 0.0001, 5 year relative risk = 1.87 ± 0.07).
More importantly, our integrative model combining image
and clinical variables is also effective at predicting patient
mortality risk on the external validation cohort (WSU-COAD,
5 year survival p < 0.0001, 5 year relative risk = 1.52 ± 0.08)
and TCGA-READ (5 year survival p < 0.0001, 5 year relative
risk = 1.18 ± 0.17).

Implications of all the available evidence
Our results show architectural improvements to predictive
models that enhance patient stratification. This can be useful
to develop personalized treatment plans, such as closer
follow-up for those with higher predicted risk. This is
particularly beneficial for patients considered under current
standards to be moderate risk, as their prognoses are often
uncertain. Using our models to inform treatment strategies
may improve survival rates and reduce mortality rates among
COAD patients. Our integrative model is more efficient than
other models at combining pathological and clinical features.
Therefore, it can also guide design of accurate models for
other cancer types while minimizing data requirements.
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models have room for improvement as they tend to only
utilize a single data modality and rely on large datasets
for model training, including in recent studies of colo-
rectal cancer.21,22

We hypothesize that integrating H&E image data
with other data modalities can improve risk stratification
since clinical variables, mutation signatures, and gene
expression profiles have individually been shown to be
informative.23 To address this question, we develop and
evaluate integrative deep learning models that combine
morphological features from H&E WSIs, clinical vari-
ables, MSI-status, and mutation status of key genes.24–31

While prior studies have combined patient-level image
features from WSIs with patient-level clinical variables,
to the best of our knowledge, our work is the first to
train at the tile level with patient-level information based
on context-aware learning,32 which we find improves
performance.

We show that integrative analysis improves patient
stratification and enables training of reliable models
using smaller sample sizes, which we demonstrate us-
ing TCGA-COAD33 and an independently generated
dataset from Wayne State University (WSU-COAD). We
further validate our COAD models on rectal adenocar-
cinoma patients (TCGA-READ). Our integrative model
demonstrates superior performance to models using
only one data type and is more robust to staining dif-
ferences than a model using only WSIs. Our model
outputs interpretable heatmaps, which are informative
of morphologies of high risk. These results demonstrate
how integrative computational analysis of colorectal
adenocarcinomas can improve prediction of outcomes.

Methods
We have provided a simplified explanation of our
methodological process in the Supplementary Method-
ological Appendix. This is intended to facilitate
comprehension for readers with a clinical background.
For those interested in a deeper understanding of the
machine learning processes involved, the full technical
details are available in this Methods section.

Data and study design
TCGA-COAD cohort
336 Formalin-Fixed Paraffin-Embedded (FFPE) hema-
toxylin and eosin (H&E) stained TCGA-COAD WSIs
were downloaded from the GDC (Genomic Data Com-
mons) data portal. The following clinical variables were
downloaded from the cBioPortal webpage34,35: patient
age at diagnosis, gender, tumor (T) stage, nodes (N)
stage, and metastasis (M) stage. Mutation statuses of
207 genes were downloaded from the cBioPortal web-
page (see Supplementary Figure S10 for the full gene
list). Patients were grouped by their overall survival
(OS): low-risk (LR, OS > 5 years, N = 25), moderate-risk

(MR, 3<OS < 5 years, N = 45), high-risk (HR, OS < 3
years, N = 38), and loss to follow-up (time to last follow
up < 3 years, patient status: alive, N = 228 censored
patients).

WSIs from these 228 censored patients were also
used for the training of the computational tumor de-
tector. We used these patients for this task because their
WSIs are disjoint from the WSIs used to train the sur-
vival predictions. This removes any potential spurious
correlations that could arise if the tumor/non-tumor
separator were trained on the same WSIs as used for
the survival model.

Wayne State University validation cohort
123 patients’ H&E stained FFPE samples and corre-
sponding clinical data were collected from Wayne State
University (WSU). The clinical data include patient age
at diagnosis, gender, T stage, N stage and M stage. Pa-
tients were grouped as HR (N = 17), LR (N = 97) and MR
(N = 9). There was no loss to follow-up in this cohort.

Combined multi-center cohort: A multi-center cohort
(N = 115) was obtained by combining the WSU (N = 43)
validation cohort and TCGA-COAD (N = 72). TCGA-
COAD slides obtained from Indivumed (N = 36) were
removed (see Model training and assessment section).
Patients were grouped as HR (N = 39), LR (N = 42) and
MR (N = 34).

TCGA-READ cohort
165 FFPE TCGA-READ WSIs corresponding to 164
patients were downloaded from the GDC data portal.
The following clinical variables were downloaded from
the cBioPortal webpage: patient age at diagnosis,
gender, tumor (T) stage, nodes (N) stage, and metastasis
(M) stage. Mutation statuses of 207 genes were down-
loaded from the cBioPortal webpage. Patients were
grouped by their overall survival (OS): low-risk (LR,
OS > 5 years, N = 13), moderate-risk (MR, 3<OS < 5
years, N = 22), high-risk (HR, OS < 3 years, N = 17), and
loss to follow-up (time to last follow up < 3 years, patient
status: alive, N = 112 censored patients).

Data preparation
Tumor annotation
Tumor regions of WSIs were annotated by 3 expert
pathologists by multi-scoping the specimens to produce
a consensus among the slides. Pathologists used the
Aperio ImageScope software version 12.4.336 for anno-
tation. Our pathologists only annotated highly pure tu-
mor regions. Tumor areas were exported from the
Aperio software in The Extensible Markup Language
(XML) format, with X and Y coordinates corresponding
to the annotated tumor regions. Tumor masks were
generated for each slide image by connecting the co-
ordinates, dilating, and eroding the areas using the
OpenCV package in python.37
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Image pre-processing
H&E stained WSIs were acquired in SVS format. All
images were downsampled to 20 × magnification, cor-
responding to a resolution of 0.5 μm/pixel. Each WSI
was manually reviewed and the tumor area was anno-
tated by expert pathologists. Regions with excess back-
ground or containing no tissue were removed as
previously described.38 Image slides were tiled into non-
overlapping patches of 512 × 512 pixels. Tiles with >50%
overlap with tumor masks were labeled as tumor tiles.
The remaining tiles were labeled non-tumor.

Clinical data pre-processing
Five clinical variables related to patient outcomes were
selected by the pathology team: age at diagnosis, gender,
and TNM (Tumor, Nodes, and Metastasis) staging of
colonic adenocarcinomas: tumor (T) stage, nodes (N)
stage, and metastases (M) stage based on the college of
American pathology (CAP) protocol for Colon and
Rectum, Resection 2021 (v4.2.0.0)). Age was encoded
numerically, and other variables were encoded as
integers.

Molecular data pre-processing: 207 genes from 11
canonical cancer pathways24–31 and the top 11 most
commonly mutated genes in TCGA-COAD were
selected. A 10% threshold was used to filter out genes
that are not frequently mutated in TCGA-COAD pa-
tients, resulting in a total of 26 genes (see
Supplementary Figure S10). Microsatellite instability
(MSI) status was also considered due to its impact in
colon cancers.39 Supplementary Table S1 describes pa-
tient characteristics.

Model training and assessment
Train-test splits and cross-validation
We used Monte Carlo cross-validation to assess the
model performance. When training and testing on the
same cohort, we randomly split our cohort into paired
training (70%) and testing (30%) sets to generate 100
training/testing set pairs. The predictive accuracy was
assessed in each split. The results (AUC values and
survivorship values) were then averaged over the splits.

For the cross-validation analysis when testing on all
patients, we randomly split the entire data set into a
70%/30% train/test split. We then selected only the high
and low risk samples from the 70% subset for model
training. The test set, constituting the remaining 30%,
included all sample types: high risk, low risk, moderate
risk, and those patients lost to follow-up within 3 years.
This approach allows one to perform cross-validation
analyses on uncensored test sets while training on
binarized high/low sets.

For tests focused on how moderate risk samples
impact survival prediction (for example, when adding
the moderate risk patients to the high + low for testing,
but training on high + low), we used the following
procedure. We randomly split the high + low set into a

70%/30% train/test split. We then took the 30% test set
and added the remaining moderate risk samples. This
procedure was used in the analyses of "Images are
informative of colon adenocarcinoma risk" and
"Integrative analysis improves stratification of moderate
risk patients" sections.

Network architecture
InceptionV340 features pre-trained on Image-Net41 were
fed to a two-layer multi-layer perceptron (MLP)
following the parameters of38: The first layer has 1024
neurons followed by ReLU activation and drop-out. The
second layer is the classification layer with softmax
activation. Parameter initialization and batch size (=512)
was set according to38 L1-L2 regularization values and
number training epoch were the two hyper-parameters
optimized over subsets of data before the final cross
validation step (number of epochs = 10, L1-L2 regula-
rization, regularization of 10e-4 for both L1 and L2
penalties. The model only using WSIs was used for
hyper-parameter optimization. For the computational
tumor detector we used the same architecture from.38

Feature construction
Mutation status was encoded as a binary variable. Age
was encoded as a continuous variable. Other clinical
variables were encoded as integers as well as one-hot-
encoded variables. The deep learning survival model
used the one-hot-encoding outputs. Random forest
models trained on clinical and mutation status consid-
ered both encodings. Integer encoding resulted in
higher AUCs and was used throughout. Clinical and/or
mutation status variables were concatenated with the tile
level Inception V3 features (see Fig. 1).

Deep learning model training
Deep learning models were trained to predict risk either
from WSIs only, or as integrative models that combine
WSIs and other data modalities. A key difference of our
method compared to others is how we use local infor-
mation in the training of the integrative models. In
previous approaches21 tile-level image features are
averaged within a patient to create patient-level image
features. Patient-level image features are then used with
patient level clinical variables to train the classification
model. In our integrative models, however, each tile is
concatenated with the patient clinical features, and
training is done across all tiles. We did this because
we found that using patient-level image features
in the training yielded inferior performance
(AUC = 0.68 ± 0.09 for deep learning Cox model and
AUC = 0.81 ± 0.08 for image-only model).

(1) Image-only model: for the image-based model, we
utilized the Inception V3 architecture that was pre-
trained on the ImageNet database as described previ-
ously.38 The cached 2048 global average pooling layer
features of InceptionV3 were extracted and written to
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disk for downstream analysis. (2) Integrative models:
we designed integrative prognostic models integrating
WSIs with different combinations of data modalities.
We concatenated tile-level InceptionV3 features with the
feature vectors encoding clinical variables and/or mu-
tation signature. The final feature vector was fed to the

two-layer MLP. We under-sampled tumor tiles of the
majority class to mitigate the effects of class imbalance.
To address potential batch effects, we utilized the
Macenko method42 to normalize the stain color across
training and independent test data sets. (3) Deep
learning Cox model: we trained a Cox proportional

Fig. 1: The integrative CNN model. Tumor regions of WSIs are annotated by expert pathologists. WSIs are tiled, and tiles overlapping with
pathologist tumor annotations (>50% overlap) are used for survival analysis. Tiles are color normalized using the Macenko method and passed
through an Inception V3 model pre-trained on Image-Net. Tile level CNN features are concatenated with patient level clinical variables and
mutation status. These features are fed to a multi-layer perceptron to predict patient risk.

Fig. 2: Integrative analysis improves stratification of moderate risk patients. (a) AUCs for prediction of High/Low risk class by various
models. Kaplan–Meier curves of patients from the (b) High/Low and (c) High (N = 38)/Moderate (N = 45)/Low (N = 25) clinical groups, stratified
by predicted risk class from the image-only model. Kaplan–Meier plots of High/Moderate/Low patients as stratified by the (d) image & clinical,
(e) image & mutation, and (f) image & clinical & mutation models.
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hazards model using patient-level image features
extracted from Inception V3 transfer learning architec-
ture. Specifically, slide-level image features were
generated using the median value of all tumor tiles, and
were fed into a Cox proportional hazards regression
model implementation of the statsmodels (v0.13.2)
package. We randomly split the entire data set into a
70%/30% train/test split, which includes loss-to-follow
up and moderate risk patients in addition to HR and
LR patients. The median hazard scores of patients in
each class (HR or LR) of the train set were averaged,
serving as the threshold on the hazard score for pre-
dicting class labels in the test set.

Random forest for survival analysis
We used random forests to train 3 separate models
stratifying patients based on clinical variables, mutation
status, and combined clinical and mutational signatures.
Random forests were implemented using scikit-learn
version 1.0243 with default settings except the number
of trees was set to 300. We tested several MLPs, but they
performed inferior to the random forest model and were
less stable. Therefore, the random forest model was
used as the final classifier.

Decision tree for integrative survival analysis
We used the decision tree implementation of scikit-
learn version 1.02 with default hyperparameters. We
used clinical variables and risk scores (probability of
being high risk) of image-only models trained on TCGA-
COAD and WSU-COAD combined dataset to separate
TCGA-READ patients.

Cox proportional model for integrative survival analysis
We used the Cox proportional hazard model imple-
mentation of lifelines version 0.27.4 with default
hyperparameters. We used clinical variables and risk
scores (probability of being high risk) of image-only
models trained on TCGA-COAD and WSU-COAD
combined dataset to separate TCGA-READ patients.

Model assessment
Model performance was evaluated on patients in the test
set. Tile-level risk probabilities were averaged to
construct patient level scores. A threshold of 0.5 was
used to predict patients as High risk (HR) or Low risk
(LR). No threshold optimization was performed. The
Kaplan–Meier (KM) curves were plotted using the
averaged survivorship at each time point in each cohort.
3 year and 5 year survivorships were used to assess
model performance. In addition to KM plots, the mean
and standard deviation of the area under the receiver
operating characteristic (AUROC) on the test set was
used to measure classifier performance in separating
HR and LR patients. We statistically compared survi-
vorship between high-risk and low-risk groups, as
designated by our model, at both the 3-year and 5-year

time points. The null hypothesis for this comparison
is that there is no difference in survivorship between the
high-risk and low-risk groups at either the 3-year or the
5-year mark. We used the Mann–Whitney U test to
assess these groups, giving us a quantifiable measure of
the difference in survivorship between these groups at
the specified time points.

Relative risk score
The mean and standard deviation of relative-risk at 3
year, 5 year, and median survival points were calculated
to compare KM curves. For each test set relative-risk was
calculated as follows, where SL and SH denote the
survivorship of predicted LR and predicted HR patients,
respectively:

Relative Risk= 1−SH
1−SL

For the comparison to study,21 we used their reported
SL and SH values to calculate relative risk scores.

C-index
The concordance index (C-index) is calculated using vi-
tal status, overall survival time and risk scores of deep
learning models. Scikit-survival (version 0.20.0) is used
to calculate the C-index.

Feature importance assessment
We used SHAP (SHapley Additive exPlanations)44–46 to
explain the predictions of our trained models. SHAP
measures the impact of each feature value on the pre-
dictions of a machine learning model for a single input.
The average SHAP impact across a dataset quantifies
the overall variable importance for a fixed machine
learning model. The KernelExplainer function of SHAP
was used to measure importance of clinical variables
and InceptionV3 features in the integrative deep

TCGA test set

High/Low 5-year LR 5-year HR 5-year p-value

Image-only 0.615 0.296 2.13E-25

Image & clinical 0.645 0.189 1.92E-23

Image & mutation 0.524 0.283 1.37E-21

Image, clinical & mutation 0.658 0.324 1.20E-19

Clinical-only 0.548 0.271 1.03E-24

Mutation-only 0.554 0.313 1.58E-20

Clinical & mutation 0.552 0.266 5.42E-25

WSU test set

High/Low 5-year LR 5-year HR 5-year p-value

Image-only 0.573 0.397 5.05E-13

Clinical-only 0.608 0.486 3.28E-10

Image & clinical 0.535 0.371 1.80E-22

Table 1: Survivorship of High/Low risk patients in TCGA and WSU test
set.
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learning model. 50 randomly selected tiles were used to
estimate variable importance of the integrative model.
The clinical-only model, being a random forest, uses the
TreeExplainer function of SHAP to measure the
importance of each clinical variable. Beeswarm plots
depict the impact of top variables on each patient, and
bar plots depict the average SHAP value magnitudes of
top variables for each class. For each variable group total
importance is defined as the sum of the importance of
all variables in the group (e.g. all clinical variables or all
InceptionV3 image features).

Image comparison across centers
The WSU validation cohort and TCGA-COAD cohort
were compared to assess relative image quality and
compatibility. We observed stronger differences be-
tween the WSU images and TCGA Indivumed slides
than between the WSU images and TCGA-COAD slides
from other TCGA centers (see Supplementary
Figure S6). This difference was observable despite
Macenko normalization. Removing Indivumed slides
reduced stain differences and improved generalizability
of our TCGA-models to WSU data. For this reason we
removed Indivumed slides from the multicenter anal-
ysis as well. The outlier behavior of the TCGA Indi-
vumed slides has been reported in prior studies of
TCGA WSIs47 as well.

Quantitative analysis of predictive regions
probability of being high risk of the image-only model
using WSU-COAD and TCGA-COAD data was averaged
over all splits to obtain slide-level probabilities. For HR
patients, tiles with HR probability >0.9 were identified
as predictive tiles. For patients with more than 500
predictive tiles, the top 3% tiles with the highest prob-
abilities of being HR were selected to limit the number
of predictive tiles of each patient. A similar procedure
was carried out for LR patients where LR probabilities

were used to determine predictive tiles. HoverNet48 pre-
trained on the PanNuke dataset49 was used to segment
and annotate cells (labels: non-label, tumor, inflamma-
tory, connective, necrosis, and no-neo, class probability
>0.9) of predictive tiles. Total cell count and ratio of
tumor and inflammatory cells for each tile was saved.
Area of identified tumor nuclei was computed using
scikit-image version 0.20. Average area of tumor nuclei
within each tile was saved.

HR and LR patients whose average probability for
correct label across training splits was above 0.75 were
considered as “easy-to-identify”. HR and LR patients
who were misclassified even when considered as
training data in a split comprised “misclassified” pa-
tients. Kolmogorov–Smirnov test (scipy version 1.10.1)
of differences between informative tiles of HR and LR
patients in easy-to-identify and misclassified groups are
reported.

Ethics
The study did not require new ethical approval, as it is
encompassed by prior IRB-20-05-2248.

Role of the funding source
This study was supported by the National Cancer In-
stitutes (Grant No. R01CA230031 and P30CA034196).
The funders had no roles in study design, data collection
and analysis or preparation of the manuscript.

Results
Images are informative of colon adenocarcinoma
risk
We first investigated to what extent WSIs alone are
predictive of patient risk in TCGA-COAD (Fig. 1). We
binned patients as high-risk (HR, OS < 3 years, N = 38),
moderate risk (MR, 3 years < OS < 5 years, N = 45), and
low risk (LR, OS > 5 years, N = 25) based on overall
survival (see Methods). We trained a convolutional

TCGA test set

High/Moderate/Low 3-year LR 3-year HR 5-year LR 5-year HR 3-year p-value 5-year p-value

Image-only 0.836 0.786 0.586 0.564 1.96E-05 5.36E-01

Image & clinical 0.899 0.697 0.65 0.449 1.25E-20 1.33E-14

Image & mutation 0.894 0.644 0.591 0.496 7.70E-20 2.21E-03

Image & clinical & mutation 0.919 0.581 0.671 0.355 2.76E-30 6.69E-30

Clinical-only 0.687 0.663 0.418 0.275 3.72E-02 1.54E-21

Mutation-only 0.437 0.459 0.437 0.459 1.00E + 00 1.00E + 00

Clinical & mutation 0.822 0.768 0.63 0.443 6.19E-02 3.75E-20

WSU test set

High/Moderate/Low 3-year LR 3-year HR 5-year LR 5-year HR 3-year p-value 5-year p-value

Image-only 0.858 0.857 0.662 0.646 5.00E-01 1.84E-01

Clinical-only 0.605 0.555 0.507 0.453 3.25E-03 2.14E-03

Image & clinical 0.747 0.605 0.682 0.545 1.14E-09 2.15E-05

Table 2: Survivorship of H/M/L patients of TCGA and WSU test set.
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neural network (CNN) to predict risk from WSIs using
the HR and LR patients as binary training sets. This
yields what we refer to as the image-only model (see
Methods). In cross-validation tests, the image-only
model is able to distinguish HR and LR patients
(AUC = 0.81 ± 0.08, see Fig. 2a), and patients predicted
to be HR vs. LR have well-separated survival curves (see
Fig. 2b and Table 1, p-value = 2.13e-25, 5 year relative
risk = 1.83 ± 0.04). However, the separation between
survival curves decreases when MR (3<OS < 5) patients
are added to the test set (see Fig. 2c). The image-only
model is unable to stratify patients (Supplementary
Figure S1a, C-index = 0.49 ± 0.16, 5 year
RR = 1.06 ± 0.22, RR-CI = [0.89, 1.19], p-value>0.5)
when all patients are included in the test set (i.e. HR,
LR, MR, and survivors lost to follow-up within 3 years,
see Methods).

Our approach trains on HR and LR patients only,
and we observed that this binarization of the training
data was important to the predictive success. As a
comparison, we trained a Cox proportional hazard
model, which is based on survival times from all pa-
tients (HR, LR, MR, and lost-to-follow-up, see Methods).
Despite this consideration of all patients, the Cox model
did poorly in separating survival outcomes in cross-
validation tests (Supplementary Figure S1b, 5 year
relative risk = 1.04 ± 0.09, p-value = 2.34e-3, C-
index = 0.51 ± 0.10). Therefore we used the binarized
approach for training in subsequent analyses.

Next, we compared the image-only model to models
based on clinical variables and/or mutation statuses (see
Methods). The image-only (AUC = 0.81 ± 0.08) model
performance was superior to models using only clinical
variables (clinical-only model, see Fig. 2a and
Supplementary Figure S1c, AUC = 0.71 ± 0.12) or only
mutation status (mutation-only model, see Fig. 2a and
Supplementary Figure S1d, AUC = 0.66 ± 0.12), as
well as to an integrative model combining clinical
and mutation information (clinical & mutation model,
see Fig. 2a and Supplementary Figure S1e,
AUC = 0.69 ± 0.11). These results indicate WSIs are a
rich source of information for separating HR and LR
patients. Similarly, the clinical-only, mutation-only, and
clinical & mutation models were less effective than the
image-only model in separating the survival curves
when MR patients were included in the test set (see
Supplementary Figure S1i and j and Table 2).

Integrative analysis improves stratification of
moderate risk patients
We next tested whether an integrative model combining
WSIs, clinical variables, and mutation status, hereafter
called the image & clinical & mutation model, would
improve patient stratification. We found that the fully
integrative model performs similarly to the image-only
model in separating HR and LR patients (see Fig. 2a),
but performs superiorly when MR patients are also

included in the test set (compare Fig. 2f and
Supplementary Figure S1h). Moreover, even when all
patients, including those lost early to follow-up, were
included in the test set (see Methods), the integrative
model was still successful in separating patients
(Supplementary Figure S1k, C-index = 0.69 ± 0.19, 5
year RR = 2.74 ± 0.63, RR-CI = [2.01, 3.12], p-
value = 6.29e-19). This finding is similar to the results
of50 on skin cancers, which reported that an integrative
model has comparable performance to single-data-type
models for distinguishing patients with strong survi-
vorship differences, but provides additional benefit for
low confidence cases.

We also investigated integrative models utilizing two
data modalities (image & clinical and image & mutation
models, see Fig. 2d and e and Supplementary
Figure S1e–g) for stratifying patients. The integrative
models using only two data types were inferior to the
image & clinical & mutation model, though the image &
clinical model was superior to the image & mutation
model. Both the image & clinical and image & mutation
models outperform the clinical & mutation model (see
Supplementary Figure S1f, 1g and 1e). As shown in
Table 2, the image & clinical & mutation model
(RR = 4.01 ± 0.07, p-value = 2.76e-30) provided stronger
separation of survival curves than the image-only
(3 year RR = 1.29 ± 0.11, p-value = 1.96e-5, 5 year
RR = 0.95 ± 0.09, p-value = 5.36e-1) and the clinical-only
(3 year RR = 1.02 ± 0.10, p-value = 3.72e-2, 5 year
RR = 1.23 ± 0.08, p-value = 1.54e-21) models at the
3-year and 5-year time points.

Prediction heatmaps reveal the morphology
associated with risk
We analyzed the prediction heatmaps of several repre-
sentative TCGA-COAD slides to gain insight about the
underlying morphologies that CNNs associate with risk
(see Fig. 3, Supplementary Figure S2, Supplementary
Figure S3). These heatmaps were generated using the
image & clinical & mutation model and show the risk
probability for each tile as predicted by the CNN.
Pathologist review suggests that nuclear shape, nuclear
size pleomorphism, intense cellularity, and abnormal
structures are indicative of high risk. Low risk tiles tend
to have more regular and small cells.51–54

We then quantified the differences between infor-
mative tiles of easy-to-identify HR and LR patients (see
methods, Supplementary Figure S4). HR tiles were
more cellular (HR: 291 ± 125, LR: 269 ± 120, raw p-
value = 1.5e-50) and contained more tumor cells (HR:
134 ± 99, LR: 112 ± 86, raw p-value = 6.5e-37). Their
tumor cells were also larger in size (HR: 216 ± 70, LR:
201 ± 72, p-value<1e-100). We saw little immune activity
across informative tiles of TCGA-COAD patients (im-
mune cell ratio = 0.014 ± 0.03). We further quantified
the differences between misclassified HR and LR pa-
tients. Misclassified LR patients had informative tiles
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with higher cellularity (HR: 284 ± 88, LR: 313 ± 102, raw
p-value = 4.8e-6) and higher number of tumor cells (HR:
110 ± 70, LR: 128 ± 91, p-value = 1.1e-6) than mis-
classified HR patients.

Pure tumor regions are more informative of risk
Accurate identification of tumor regions within a WSI is
a key preliminary step affecting risk classification. To
test whether pathologist annotation of tumor regions

can be replaced with a computational method, we used
pathologist annotations of 228 independent WSIs (see
Methods) to build a computational tumor detector. This
detector showed high accuracy (Fig. 4a, AUC >92%).
Some other works have reported higher AUCs for
computationally identifying tumor regions,55 though
this is likely due to variations in pathologist annotation
methods. For example, some of our “false positives” are
due to the fact that only a subset of tumor regions in a

Fig. 3: Representative H&E slides from TCGA test set and their predicted heatmaps. WSIs of (a) a high risk patient and (c) a low risk patient.
The prediction heatmaps of (b-left) a high risk patient and (d-left) a low risk patient. Example tiles predicted as (b-right) high risk and (d-right)
low risk from (a) high risk patient and (c) low risk patient, respectively.

Fig. 4: Accurate tumor detection improves survival prediction. (a) Ground truth annotations of tumor regions from pathologists, circled with
redlines (top) and tumor prediction heatmaps (bottom). (b) Kaplan–Meier curve of predicted high and low risk patients on the full set of High
(N = 38)/Moderate (N = 45)/Low (N = 25) risk patients, determined by applying the image, clinical & mutation model to predicted tumor
regions.

Articles

www.thelancet.com Vol 94 August, 2023 9

www.thelancet.com/digital-health


slide were selected for annotation (see Supplementary
Figure S5). Other discrepancies between our computa-
tional predictions and pathologist annotations appear to
be related to pathologists’ implicit thresholds for tumor
annotation. Manual inspection of several “false positive”
computational predictions indicate they do contain tu-
mor cells but at lower purity than pathologist annotated
regions.

The Kaplan–Meier curve of the image & clinical &
mutation model using the computational tumor detec-
tor as input is shown in Fig. 4b. As in Fig. 2f, there is a
clear separation between the high and low risk curves.
However, the separation is lower using the computa-
tional tumor detector than using pathologist annota-
tions. The 5 year relative risks when using pathologist
annotated and deep learning-predicted tumor regions
are 1.83 and 1.65, respectively (p-value <0.05). These
results suggest that the integrative model is more
effective using only pure tumor regions as input, while
computational tumor predictions tend to include low-
purity regions that reduce performance.

Validation of TCGA models on Wayne State hospital
data
We validated our TCGA-trained models on an inde-
pendent COAD dataset from Wayne State University
(WSU). We collected and annotated tumor regions
(N = 123, see Methods), and stratified patients as HR
(N = 17), LR (N = 97), or MR (N = 9) similar to the
TCGA-COAD cohort. For analyses involving the WSU-
COAD cohort, we did not include mutation data as it
was not available.

We first considered a test set that included all HR, LR
and MR cases together. The image-only model was
unable to stratify high and low risk patients for this test
set (3 year survival, image-only p-value = 5.0e-01,
Fig. 5a). The clinical-only model provided a statistically
significant but modest stratification (3 year
RR = 1.12 ± 0.33, RR-CI = [0.65, 1.67], p-value = 3.3e-03,
Fig. 5b). However, the image & clinical model provided
superior separation of the patient cohort (3 year
RR = 1.53 ± 0.27, RR-CI = [1.03, 2.21], p-value = 1.14e-
09, see Fig. 5c and Table 2), consistent with expectations
from the intra-TCGA analysis.

We next considered the simpler problem in which
only the HR and LR patients were in the test set. As
expected we found better stratification than in the HR/
MR/LR case for all models: image-only (3 year
RR = 1.41 ± 0.19, RR-CI = [0.78, 2.01], p-value = 5.05e-
13), clinical-only (3 year RR = 1.3 ± 0.23, RR-CI = [0.87,
1.74], p-value = 3.28e-10), and image & clinical models
(3 year RR = 1.46 ± 0.09, RR-CI = [1.12, 1.82], p-
value = 1.80e-22). Notably, the image & clinical model
has performance superior to the image-only and clinical-
only models (Fig. 5d–f). Interestingly, we observe sig-
nificant p-values for the image & clinical model in the

TCGA data and WSU in Table 2 at both time points.
However, for the image-only model, the p-values are
significant in the TCGA data at the 3-year time point
(2e-5) but not the 5-year time point, and they are not
significant at either time point in the WSU data. This
suggests that the integrative model is more robust to
stain differences, as might be expected from its addition
of clinical features.

Our pathologists further evaluated the heatmaps of
the image & clinical model in the WSU cohort (see
Supplementary Figure S2). These confirmed similar
findings to the TCGA test set, i.e. that nuclear shape,
nuclear size pleomorphism, intense cellularity, and
abnormal structures are associated with high risk.

We then quantified the differences between infor-
mative tiles of easy-to-identify HR and LR patients (see
Methods, Supplementary Figure S4). HR tiles contained
more tumor cells (HR: 126 ± 91, LR: 113 ± 108, raw p-
value = 1.6e-98), had higher tumor cell ratios (HR:
0.47 ± 0.23, LR: 0.33 ± 0.28, raw p-value <1e-100), had
larger tumor nuclei (HR: 252 ± 74, LR: 183 ± 97, raw p-
value <1e-100), contained fewer immune cells (HR:
4 ± 7, LR: 26 ± 55, raw p-value <1e-100), and had lower
ratios of immune cells (HR: 0.018 ± 0.03,
LR:0.084 ± 0.012, raw p-value<1e-100). We further
quantified the differences between misclassified HR
and LR patients. Misclassified LR patients had infor-
mative tiles with higher cellularity (HR: 230 ± 106, LR:
273 ± 163, raw p-value = 8.4e-28).

Robustness of separating moderate risk patients
into high/low risk groups
We combined the Wayne State and TCGA data to more
exhaustively investigate how MR patients can be
computationally stratified into high and low risk groups.
We used the image & clinical model and trained on HR
and LR patients, analogous to Fig. 2d. Given the small
number of MR patients in the WSU cohort (N = 9), we
tested this in two ways: (1) training on WSU and testing
on TCGA (N = 45 in MR group), and (2) forming a
combined multicenter dataset (TCGA + WSU) and
testing/training on subsets.

First, we considered the model trained on WSU pa-
tients. We confirmed that the model trained on WSU
HR and LR patients is able to effectively stratify a test set
made of TCGA HR and LR patients (Supplementary
Figure S7). We then tested how the model can stratify
TCGA MR patients by risk. The model is able to stratify
MR patients into higher risk and lower risk sets (5-year
p-value = 0.03), though as expected stratification is not
as distinct as for the HR/LR test sets. Second, we trained
a model from the combined WSU + TCGA set. As ex-
pected, this model was able to stratify a reserved set of
HR and LR patients by risk (Supplementary Figure S7).
It also was able to separate MR patients into higher risk
and lower risk (5-year p-value = 5.63e-14), with a highly
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significant p-value. Interestingly, both of the MR strati-
fication tests yielded long term survival ratio differences
in the two predicted groups. Our results indicate that
MR patients share enough similarities with HR and LR
patients to improve survival stratification.

Validation of colon adenocarcinoma models on
rectal adenocarcinoma
We tested if our COAD models generalize to READ.
Our integrative models trained on TCGA-COAD and
tested on TCGA-READ separate patients (Fig. 6 and

Fig. 5: External validation using Wayne State data. a–c. The Kaplan–Meier curves of High/Moderate/Low patients using TCGA-trained
classifiers (N = 72) for (a) image-only, (b) clinical-only, and (c) image & clinical models tested on external data (N = 123). d–f. The Kaplan–
Meier curves of High/Low patients using TCGA-trained classifiers for (d) image-only, (e) clinical-only, and (f) image & clinical models tested
on external data.

Fig. 6: Models trained on COAD patients separate READ patients: Kaplan–Meier plots of (a) image-only model trained on TCGA-COAD
separating (a) HR and LR TCGA-READ (N = 30) and (b) HR, MR, and LR TCGA-READ patients (N = 52). Kaplan–Meier plots of (c) image &
clinical, and (d) image & clinical & genomic models trained on TCGA-COAD separating (a) HR, MR, and LR TCGA-READ patients (N = 52). Kaplan–
Meier plots of (e) image-only and (f) image & clinical models trained on TCGA-COAD and WSU-COAD combined dataset separating HR, MR, and
LR TCGA-READ patients (N = 52).
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Supplementary Figure S8). Consistent with previous
results on COAD patients (sections 3.1 and 3.5), the
image-only model was successful in separating HR and
LR patients (5 year RR = 1.52 ± 0.31, RR-CI = [1.22,
1.89], p-value = 2.67e-20), but could not stratify patients
when MR patients were included in the test set (5 year
RR = 0.67 ± 0.22, RR-CI = [0.42, 0.91], p-value>0.5,
Fig. 6). Additionally, our image & clinical (5 year
RR = 1.18 ± 0.17, RR-CI = [0.86, 1.39], p-value = 1.33e-
09) and image & clinical & genomic (5 year
RR = 1.24 ± 0.22, RR-CI = [0.96, 1.44], p-value = 1.69e-
15) models separate patients (HR, MR, and LR patients
combined, Fig. 6).

Our integrative image & clinical model trained on
TCGA-COAD and WSU-COAD combined data stratifies
READ patients (5 year RR = 1.82 ± 0.13, RR-CI = [1.26,
2.34], p-value = 8.21e-25, Fig. 6). Our image-only model
trained on the combined dataset and tested on TCGA-
READ separated HR and LR patients (3 year
RR = 1.48 ± 0.27, RR-CI = [0.98, 1.81], p-value = 1.41e-
23, Supplementary Figure S8), but did not separate pa-
tients when MR patients were included (3 year
RR = 0.82 ± 0.39, RR-CI = [0.51, 1.14], p-value>0.5,
Fig. 6).

Our image only model was able to separate HR and
LR patients when restricted to stage 2 (3 year
RR = 1.9 ± 0.67, RR-CI = [0.93, 3.47], p-value = 8.2e-
39), non metastatic (3 year RR = 1.56 ± 0.59, RR-
CI = [0.91, 4.18], p-value = 2.8e-22), lymph node
negative (3 year RR = 1.58 ± 0.85, RR-CI = [0.51, 3.2],
p-value = 8.2e-5), and metastatic-or-stage 3 (3 year
RR = 1.36 ± 0.14, RR-CI = [1.25, 1.5], p-value = 4.3e-
34) patients (Supplementary Figure S8). While recent
studies suggest deep learning models may be sensi-
tive to the differences between COAD and READ,56

our COAD models were successful in separating
READ patients.

We compared our integrative image & clinical model
with integrative models using a decision tree or the Cox
proportional hazards model, in which patient-level im-
age-based risk is combined with clinical variables (see
Methods, Supplementary Figure S8). Our image &
clinical model (3 year RR = 1.82 ± 0.13, RR-CI = [1.43,
2.14], p-value = 8.21e-25) performed superior to the
decision tree (3 year survival RR = 1.06 ± 0.44, RR-
CI = [0.53, 2.2], p-value = 0.37) and the Cox model (3
year survival RR = 1.37 ± 0.6, RR-CI = [0.42, 1.6], p-
value = 1.7e-11).

We then combined WSU-COAD, TCGA-COAD, and
TCGA-READ data to further investigate if MR patients
can be computationally stratified into high and low risk
groups via the multicenter approach of section 3.6. We
observed (Supplementary Figure S9) our image & clin-
ical model (3 year survival RR = 2.26 ± 0.56, RR-
CI = [1.78, 2.92], p-value = 4.4e-28) is superior to image-
only (3 year survival RR = 1.99 ± 0.39, RR-CI = [1.53,
2.10], p-value = 7.2e-08) and clinical-only (3 year survival

RR = 1.67 ± 0.55, RR-CI = [1.13, 2.14], p-value = 5.9e-06)
models.

Feature importance for colon adenocarcinoma risk
To improve interpretability of our deep learning models,
we used SHAP44–46 to measure the contribution of each
clinical or Inception v3 image feature to the model
output (see Methods). We describe results for the model
trained on TCGA and tested on Wayne State. We found
that T stage, M stage, and age are the most impactful
features in the integrative model (see Methods, Fig. 7).
Although only two InceptionV3 features have compa-
rable importance to these clinical variables, the total
importance of InceptionV3 features (11.84) is higher
than clinical variables (6.63). This may be explained by
the fact that image contributions are spread across 2048
InceptionV3 features, while there are only 6 clinical
variables for each patient. Interestingly, although indi-
vidual clinical variables have high importance, the
clinical-only model does not separate patients, suggest-
ing the importance of cross-talk between clinical and
image features.

Discussion
While the utility of individual data modalities, such as
clinical variables, mutation signatures, and WSIs, for
patient stratification has been established,7–11,21,22,57,58 our
study demonstrates that integrative analysis improves
patient risk stratification even for the challenging case of
patients with intermediate survival times. Our image &
clinical model showed more robustness to stain differ-
ences than the image-only model (section 3.5). While
our image & clinical model successfully separated pa-
tients when MR patients were included in the test set,
image-only and clinical-only models performed poorly
(see sections 3.1 and 3.2). Of potential importance is
that cross-talk, i.e. variable–variable interactions, be-
tween image features and clinical variables, is infor-
mative of patient risk (see Tables 1 and 2; see Figs. 2 and
5). Quantifying the crosstalk between each image
feature and each clinical variable is an open research
question for non-parametric deep learning models.

Our approach showed comparable performance even
though we used a much smaller dataset size (231 COAD
patients, 52 READ patients) than other recent studies
(>5000 patients,21 >2800 patients,22 >1000 patients59). For
example, in this study,21 they used more than 5000 cases
to predict 5-year disease-specific survival for colorectal
cancer. Their survival rates for high and low-risk groups
were 53% vs. 86% (validation set 1, 5 year RR = 3.35)
and 46% vs. 80% (validation set 2, 5 year RR = 2.7). For
our method trained on <300 patients, although our
image model did slightly worse (image-only: 5 year
RR = 1.83), the integrative model was superior (image &
clinical & mutation: 5 year RR = 4.01). Furthermore, in21

the AUC for predicting high/low risk was 0.70, but our
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integrative model achieved an AUC of 0.80. This is of
particular interest for translational research as large
samples are difficult to obtain for many cancer types. The
lower sample size requirements of our models can be
attributed to a number of strengths. First, restricting im-
age analysis to regions with high tumor content is crucial
for reliable risk assessment (Results and Fig. 4). Second,
our training process uses classification-based losses and
combines local tile-level with global patient-level infor-
mation to improve model training. Although overall sur-
vival is widely used as the dependent variable in survival
analysis, it is not a direct measure of patient underlying
risk,60 as outcomes can be influenced by uncertain factors
such as each patient’s access to effective treatments. Prior
theoretical results have suggested that simplifying
continuous data into discrete categories reduces noise in
related estimation problems.61,62 We observed the quanti-
zation strategy improves patient stratification (see section
3.1), which is consistent with recent survival analysis
studies using gene expression data.60 Third, restricting to
patient subsets with strong survival differences produces a
more reliable training dataset. While previous works have
assigned a continuous risk score to all patients, e.g. Cox
hazard ratio, and identified MR patients as a post-pro-
cess,21 our approach of binary classification of MR patients
yields clearer results.

The combining of local tile-level image features with
patient level information has theoretical advantages as it
is a form of context-aware learning.32 In our analysis

(section 3.7), this approach performed superior to those
which first combine image features into an initial risk
score, and combine patient information and the image-
based score as a secondary step.21,63 Our approach is
superior to,21 where tile-level image features are first
combined to a patient level image features, then patient
level image and clinical variables are combined after-
wards. Particularly, only our model was able to detect
the importance of cross-talk between local image fea-
tures and clinical variables. In,21 almost all of the signal
was due to the image features (73–80%) with a lesser
contribution from clinical features (T, N, and grade to-
tal: 18%) and no apparent cross-talk.

Prediction heatmaps from our computational model
enable identifying regions that are informative of risk,
improving model interpretability and discovery of novel
prognostic markers. Specifically, our pathologist evalu-
ations of the model predictions resulted in the findings
that nuclear shape, nuclear size pleomorphism, intense
cellularity, and abnormal structures are associated with
higher risk (see Results and Fig. 3). Our predictions also
comport with known histopathological risk features.
Histopathological tumor grading is used in the College
of American Pathologists (CAP) protocol for colon can-
cer reporting as part of the diagnostic standard template,
and has been shown to correlate with patient
survival.51–54 We observed a similar trend in both the
TCGA-COAD and the WSU sets during annotation and
clinical data collection. Such stratification based on

Fig. 7: SHAP values of individual features of image & clinical model applied to Wayne State data. (a) Bar plot of the average SHAP values
for top predicted features to illustrate global feature importance in class 1(High risk) and class 0 (Low risk). (b) SHAP values of top features
across the Wayne State dataset. The plot sorts features by the sum of SHAP value magnitudes over all samples. The color represents the feature
value (red high, blue low).
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histology is used in pathology reports as either a 2-tier,
3-tier, or 4-tier classification of tumors from well
differentiated to poorly differentiated.64 Comparable
patterns of high and low risk morphology were detected
by the deep learning model as shown in Fig. 3 and
Supplementary Figure S2.

Our integrative deep learning model has potential to
improve clinical decision making. For example, patients
with a higher predicted risk of mortality may receive
personalized treatment plans with closer follow ups.
Patients considered under current standards to be
moderate risk may especially benefit, as their outcomes
are difficult to predict65,66 and better distinguishing their
risk will be clinically useful.67,68 Computational risk
prediction may also present evidence for improved
approval of expensive scans and improved patient
counseling. To realize these translational goals, an
important future direction will be to further explore the
cross-talk between morphological features and clinical
variables. Recent studies suggest that individual image
deep learning features encode interpretable morphol-
ogies69 and that small clusters of deep learning features
encode distinct markers of risk.21 Cross-talk can be
further studied by identifying the distinct morphologies
encoded by deep learning features in regions of interest,
and then evaluating correlations between deep learning
features and clinical variables in each risk group. While
the current study establishes the utility of integrative
models in stratifying moderate risk patients and
reducing sample size requirements, larger multicenter
datasets will be valuable to improve risk predictions and
especially robustness to stain variations. Future research
efforts should be devoted to confirming the applicability
and efficacy of this neural network approach using more
extensive patient cohorts for which comprehensive data,
including matched clinical, imaging, and genomic mu-
tation data, are available. These should be coupled with
tests of the empirical robustness of predictions in spite
of variations in data acquisition. Such broader studies
will ensure the validity of our model across diverse
population groups and cancer types.
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