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SUMMARY

Changes in body mass are key indicators of health in humans and animals and are routinely monitored in an-
imal husbandry and preclinical studies. In rodent studies, the currentmethod ofmanually weighing the animal
on a balance causes at least two issues. First, directly handling the animal induces stress, possibly confound-
ing studies. Second, these data are static, limiting continuous assessment and obscuring rapid changes. A
non-invasive, continuous method of monitoring animal mass would have utility in multiple biomedical
research areas.We combine computer vision with statistical modeling to demonstrate the feasibility of deter-
mining mouse bodymass by using video data. Our methods determine mass with a 4.8% error across genet-
ically diverse mouse strains with varied coat colors and masses. This error is low enough to replace manual
weighing in most mouse studies. We conclude that visually determining rodent mass enables non-invasive,
continuous monitoring, improving preclinical studies and animal welfare.

INTRODUCTION

Body mass is a primary measure of health and disease in hu-

mans. For example, the body mass index is a key measure of

metabolic health and is one of the oldest and most widely used

metrics in modern medicine.1 Changes in body mass indicate

the function of many systems, including metabolic, cardiac,

and psychiatric, and are often the primary symptom of disease

onset.2,3 Rodents, particularly mice, are commonly used to

model human diseases, carry out preclinical studies, and inves-

tigate disease pathologies. Over 95% of disease research that

involves animal models is conducted with mice.4 As in humans,

changes in body mass in mice are predictive of health, particu-

larly when sudden changes occur.5 The Institutional Animal

Care and Use Committee (IACUC) includes significant body

mass loss in its ‘‘humane intervention’’ guide, a set of standard-

ized criteria that call for veterinary intervention or euthanasia of

subjects. Loss of body mass greater than 20% relative to base-

line or matched controls is a common justification for such

intervention.6

Outside of ethical care, bodymass is also an important feature

collected during preclinical, metabolic, cardiovascular, and

neurobiological studies.7 However, handling mice to assess

mass induces physiological stress responses and alters immune

responses.8,9 Additionally, weight measurement is static; body

mass is typically measured every few days during the animal’s

rest phase, depending on the protocol. Weight is often visually

assessed during daily health checks by caretakers, and mass

THE BIGGER PICTURE The laboratory mouse is the primary tool to model human diseases, study mecha-
nisms, and carry out preclinical efficacy and toxicity testing of novel therapeutics. Animal experiments often
rely on bodymass as a key indicator of health. However, the frequent handling by the tester that is required to
weigh animals on a scale can induce physiological stress responses and potentially confound the experi-
mental results. Here, we used machine vision—the combined application of machine learning and computer
vision—to non-invasively determine the body mass of a mouse. Our methods allow for mass tracking in visu-
ally complex environments without human interference. In biomedical contexts, our tool improves experi-
ment and husbandry quality and ethical care standards through continuous acquisition of accurate, precise,
and autonomous mass data.
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is manually measured only if the animal looks unhealthy or has

lost weight. This can be subjective and can lead to variable treat-

ment of the animal. These effects of human handling and static

periodic measures of mass can weaken the validity and repro-

ducibility of mouse experiments. Thus, there is a need for better

methods to accurately and non-invasively measure animal mass

over time in order to improve mouse models of disease and

improve animal welfare.

To address this problem, we explore a generalized solution us-

ing computer vision (CV) to determine body mass. The applica-

tion of computer vision to determining an animal’s body mass

has been performed in industrial farming, including poultry

farming, cattle, and fishing.10–13 Additionally, a recent approach

to automating a frailty index for mice uses CV-based segmenta-

tionmasks to predict bodymass as a potential measure of frailty,

achieving a similar R2 value to our basic M1 model described

below, though with higher error.14 Existing CV approaches for

determining mass in farming contexts use a multitude of visual

metrics, including top-down silhouette area, eccentricity, perim-

eter, body length, and body width—similar metrics to the ones

we consider. These solutions use a wide range of modeling ap-

proaches, typically some form of linear regression or some type

of neural network applied to predict mass directly from the im-

age.12 Depth cameras have also been utilized for a better 3D rep-

resentation of the animal.15–18 The central difference between

our solution and most industrial farming approaches is that er-

rors introduced by animal posture are largely an issue of the an-

imal not standing in an optimal location.10 Visual mass determi-

nation in these contexts is thus an easier task, as cattle tend to

have rigid postures and relatively constant silhouettes compared

to mice. Several studies dealing with visual mass prediction for

cattle often achieve R2 values above 0.9 and relative error under

10%.10,19 Other farming applications deal with the prediction of

carcass mass, where posture is even less of a factor.11 Mice, on

the other hand, are highly flexible, have much smaller but highly

deformable bodies, and quickly change shape. This deformabil-

ity is a direct result of animal behavior and is subject to individual

differences in genetics. Thus, the deformability of rodents is a

major challenge to visual weight assessment, which we

approach by combining two visual metrics, area and eccentric-

ity, and applying multiple linear regression.

Other non-invasive methods to determine animal mass have

been implemented using highly engineered cages with balances

and compartments.5 Although these methods alleviate animal

handling issues and provide continuous mass measurement,

the highly engineered cage designs requiremodification of hous-

ing conditions and are currently limited to singly housed animals.

Thus, these methods can be challenging to scale and practically

implement. A computer vision approach is suitable for multiple

environments, both within and outside home cages, and can

be scaled for continuous monitoring of mass in multiple mice.

Therefore, this approach is potentially highly generalizable and

scalable. However, whether this approach is accurate and pre-

cise enough to replace manual weight assessment, particularly

in genetically diverse mouse strains, has yet to be determined.

Here, we test the use of single-camera video surveillance that

functions autonomously and does not require the animal to take

predetermined actions. We compare 6 statistical models with

different use cases on a dataset of 62 genetically diverse mouse

strains and show highly accurate and precise visual mass

assessment. Our approach is applicable to preclinical studies,

mouse husbandry, and other biological studies. It has the poten-

tial to expand weight assessment to novel environments and for

continuous assessment. Additionally, this method can be easily

incorporated into existing computer-vision-based monitoring

systems for routine use. We conclude that computer-vision-

based mass determination is highly accurate and precise and

can be further developed for real-world applications.

RESULTS

General approach
Our approach to visual mass determination is outlined in Fig-

ure 1A and detailed below. Briefly, we collect video data from

the top-down perspective in an open field.20 Each frame is

segmented for the mouse, which describes the animal’s size.

The segmented image is used to fit an ellipse that describes

the approximate posture of the animal and is then adjusted

with covariates to improve our modeling and mass prediction.

Mice are highly deformable, depending on their behavior. To

determine the effect of deformability on the segmentation area,

we inspected the variation of segmentation area in 55-min videos

of severalmice thatareapproximately thesamemass (25.1g) from

different strains (Figure 1B). We found that the area of the mouse

commonly deviated by ±40% (relative to the mean area) over the

course of the video (Figure 1B, left). Upon examination of the video

frames, we saw that the high variation in area was due to deform-

ability of the animal due to altered behavior (Figure 1B, right). Over

a short time frame, the mouse scrunches, stretches, bends, and

rears such that its segmentation area quickly changes.

Since we have multiple images for each animal, we focus on

the mean or median segmentation area. However, variance in

this measure can impact the precision of a prediction. We inves-

tigated this by exploring changes in the variation of segmentation

area between these mice. We found that this variation is strain

specific, i.e., dependent on genetics. For instance, a 25.4-g

C57BL/6NJ mouse has an average area of 1,355 ± 196 px,

whereas a smaller, 24.5-g A/J mouse has a larger area of

1,386 ± 142 px. However, the variation in area is larger in

C57BL/6NJ than in A/J mice. A/J mice are a high anxiety strain

with low ambulation, while C57BL/6NJ mice have more bouts

of activity.21,22 The larger segmentation area and lower variation

in A/J mice is because they spend more time in the corner in a

constant posture. We reasoned that simple segmentation is

inadequate to handle the genetic diversity seen in laboratory

mice, and a more sophisticated approach is needed.

Figure 1. Visual mass determination approach taken to address highly variable segmentation areas observed in our data

(A) Flow chart describing the full computational process from open-field video to body mass prediction.

(B) Time series of percentage of deviations from the mean segmentation area over 55 min for four individual C57BL/6J, C57BL/6NJ, A/J, and BALB/cJ mice with

(mean ± SD) of pixel area reported. Raw frames of the approximate least and greatest segmentation areas are shown to the right. Red bar on the C57BL/6J

smallest frame indicates 5 cm.
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Data and data acquisition
Our dataset consists of 2,028 videos obtained from a previously

conducted strain survey experiment.20 For an example of our

video data, see Video S1, where we provide 10-s clips from

the videos corresponding to the frames in Figure 1B. Sampled

mice come from 62 different strains, with most strains repre-

sented by at least 4 male and 4 female mice (Table S1). Our

sampled mice range in age from 6 to 81 weeks old, with a

mean age of 11 weeks. Body mass was measured immediately

before open-field recording with a precision laboratory scale

and ranges from 9.1 to 54 g with a mean of 24.7 g (see Figure S1

for age and mass distributions). Each video has one mouse in an

open-field enclosure, which measures 52 3 52 cm. Videos are

480 3 480 px, were recorded at 30 fps, last 55 min, and have

8-bit monochrome depth. The camera is positioned approxi-

mately 36 inches (91.44 cm) above the floor. A 25.1-g C57BL/

6J mouse occupies 1,434 px on average, or 0.6% of the total im-

age pixels (Figures 1A and 1B).23 This is similar to the distance

and mouse pixel area if a camera were placed on top of a mouse

cage changing table used in most barrier mouse facilities.

Error metrics
To evaluate fit accuracy, we used the coefficient of determina-

tion R2. To evaluate model error, we used mean absolute error

(MAE), root-mean-square error (RMSE), and mean absolute per-

centage error (MAPE) (see the experimental procedures for

detail).24–26 We usedMAE to get an intuitive sense of average er-

ror, RMSE to penalize larger errors more strictly, and MAPE to

get error relative to mass. Each of these metrics is commonly

used to evaluate the performance of similar computer vision

solutions.

Per-frame segmentation
First, we process a raw video from the dataset through one deep

neural network to predict a segmentation mask for themouse for

every frame of the video (Figure 1A). The segmentation network

has been trained on a diversity of mouse images and achieves

high accuracy.20 We fit an ellipse to the segmented blob as an

approximation of mouse posture.

In every video, we compute the pixel area of the segmented

mouse image in each frame by summing the number of ‘‘mouse’’

pixels, which are identified by the segmentation mask. The white

pixels in the ‘‘segmentation’’ frame of Figure 1A are an example

of mouse pixels. We summarize each video by the median of the

pixel areas across all frames in the video, denoted Apx. This pro-

vides a single area measurement per mouse per video that we

can use for modeling.

Per-camera and -arena correction
We collect data in 24 open-field arenas. Although we have stan-

dardized video data collection to a tight tolerance, there is still

slight variation in image acquisition between arenas. To account

for differences in camera lens zoom, we converted the measured

segmentation (squarepixel units) of the videos to real-worldmetric

units (square cm units). Since all our arenas are manufactured to

measure 52 3 52 cm, we located each arena’s corners in each

videobyapplyinga corner detectiondeepneural network, thereby

deriving a scaling factor from pixels to centimeters.27 To account

for arena variance, we adjust the segmentation measurement Apx

by the following equation:Acm = Apx=ðLpx=52 cmÞ2, whereAcm is

the area in square cm, Apx is the area in square pixels, and Lpx is

the corner edge length in pixels. This adjustment does not neces-

sarily require knowledge of in which arena the mouse was

measured; one only needs to know the real-world distance be-

tween corners, which should be a constant between all arenas in

an experiment. If an experiment uses arenas of intentionally vary-

ing size, thenAcm’s equation would have an arena-based variable

instead of 52 cm.

Posture correction
So far, we have identified a metric, Acm, that captures the seg-

mentation area of a single mouse, normalized for differences in

camera zoom. However, this metric does not account for the

wide variation in area for individual mice over short time periods

observed in Figure 1B, which we determined was a direct result

of changing behavior and posture in the mice. We reasoned that

accounting for varying posture is necessary to increase the per-

formance of our visual method.

To correct for posture, we examined the effect of normalizing

the area based on geometric shape descriptors of the segmen-

tation mask. We tested several geometric shape descriptors,

including eccentricity, aspect ratio, and elongation, as well as

the speed of the mouse, as defined and evaluated in Table 1.

We tested these shape descriptors under the assumption that

changes in area in a short time frame are not related to changes

inmass and somust be related to changes in pose. To determine

which shape descriptor works best, we compared RMSE, MAE,

MAPE, and R2 values for each of four models (T1–T4, Table 1).

Table 1. Posture adjustment metrics

Model Input variable Metric Formula RMSE (g) MAE (g) MAPE (%) R2

T1 Acm3 Med(eccentricity) ðw2+l2Þ1=2=l 2.353 ± 0.054 1.759 ± 0.038 7.328 ± 0.173 0.827 ± 0.01

T2 Acm3 Med(aspect ratio) w=l 3.569 ± 0.081 2.830 ± 0.06 12.298 ± 0.275 0.603 ± 0.022

T3 Acm3 Med(elongation)
m20+m02+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm11Þ2+ðm20 � m02Þ2

q
m20+m02 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm11Þ2+ðm20 � m02Þ2

q 16.83 ± 15.77 4.714 ± 0.414 21.059 ± 2.196 0.170 ± 0.125

T4 Acm3 Med(speed)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvxÞ2+ðvyÞ2

q
or j v!j 5.644 ± 0.127 4.422 ± 0.095 19.487 ± 0.460 0.002 ± 0.003

Models T1–T4 each have one input variable, the product of Acm, and themedian of the givenmetric. T1’s input is equivalent to Ae, and the inputs of T2–

T4 are analogous to Ae but for aspect ratio, elongation, and speed. In themetric formulas,w and l are the width and length of the fitted ellipse, vx and vy
are the x and y components of velocity (also representable as v!), and each mij is a central imagemoment, calculated with the python packageOpenCV.
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Each model is a single-variable linear regression, taking the

product of Acm and the median of one posture metric (eccentric-

ity, aspect ratio, elongation, or speed) as its input variable and

predicting body mass. These models are evaluated under

50-fold cross-validation with a 70–30 training-testing split, ex-

plained in full detail in the statistical analysis.

Model T1 uses hyperbolic eccentricity—defined as e =

ðw2+l2Þ1=2=l, where w and l are width and length, respec-

tively—as its shape descriptor, T2 uses aspect ratio, T3

uses elongation, and T4 uses speed, all defined in Table 1.

With hyperbolic eccentricity, T1 achieves an R2 of 0.827 and

a MAPE of 7.328%, significantly better performance than

models T2–T4. This led us to conclude that eccentricity is

the most useful indicator of shape of the metrics we tested.

We initially hypothesized that speed would be a good

descriptor by which to correct posture since mice tend to

take on a constant elliptic shape when they are moving. How-

ever, speed performs poorly, resulting in a MAPE of 19.4%

and an R2 value of only 0.002. We hypothesize that this lack

of quality is due to the proportion of time mice actually

move quickly. Although mice do take on relatively constant

postures while walking forward, this kind of motion takes up

a relatively tiny fraction of total frames and is likely strain spe-

cific. Thus, speed may work for certain strains but does not

generalize well in genetically diverse populations.

From this result, we formalize the ‘‘eccentric area’’ metric as

Ae = Acm � e, where Acm is the median of the unit-converted

area and e is the median eccentricity, both over all frames of

the given video. In full, Ae = ðApx =ðLpx=52cmÞ2Þ � ðw2+l2Þ1=2=l.
Ae functions as our video-level summary metric. To quantify the

effect of correcting posture with eccentricity, we compared the

variation in Acm (anecdotally shown to be high in Figure 1B) and

Ae by computing their respective relative standard deviations

(RSDs) across all strains (Figure 2, Acm in blue vs. Ae in red).

Note that these RSDs are of the observed area values and not

necessarily comparable to the RSDs of model prediction (see

the supplemental information for more detail).

Strain is another important factor in variability, as some

strains, like the obesity model NZO/HILtJ, have a low RSD of
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Figure 2. Adjustment of segmentation area

by eccentricity reduces RSD across strains

Relative standard deviations (RSDs) of segmen-

tation areaAcm (in blue) and the adjusted sizeAe (in

red) for each of the 62mouse strains considered in

our dataset. Each box shows the interquartile

range (IQR) and the black whiskers reach the

farthest point within 1.5 IQR of the end of the box.

about 6%, whereas a wild-derived strain

like WSB/EiJ has an RSD of about 15%.

The largest area RSD we observed was

about 18%, for the SWR/J strain. We hy-

pothesize that these strain-level differ-

ences in RSDs are largely due to differing

activity levels and behavioral patterns be-

tween strains. After posture correction,

the RSD across all strains is significantly

reduced (Figure 2, in red). The RSD, how-

ever, is still strain dependent, indicating that there are still strain-

level effects on the precision of our prediction even after posture

correction.

Other covariate correction
Equipped with several ways to describe size (Apx, Acm, and Ae),

we built six multiple linear regression models (M1–M6) to predict

bodymass. Eachmodel uses raw area (Apx), unit-converted area

(Acm), or eccentric area (Ae) as its visual variable and different

subsets of sex, strain, age, and arena (the specific open field

themousewasmeasured in) as covariates (Figures 3A–3D). After

building eachmodel, we performed a 50-fold cross-validation on

a 70/30 training/testing split. Averaging our reported accuracy

and error values over these 50 iterations ensures that our anal-

ysis is not biased by lucky or unlucky sampling.

Our first model, base (M1), is a single-variable linear regres-

sion that uses the raw segmentation area Apx to predict body

mass, which we used as a comparative baseline for the other

models (Table 2). This model has an R2 value of 0.767 and a

MAPE of 8.584% (Figure 3A). The second model, M2, is also

a single-variable regression but between the unit-converted

area Acm and body mass. M2 performs better than the base

model, increasing accuracy and decreasing error. In M3, we

added a second variable, arena, which is the particular arena

in which a mouse was tested. M3 performs slightly better

than M2 by all measures. M4 introduces eccentricity, which is

combined with the unit-converted area to be one variable, Ae,

as previously described; M4 has two variables: Ae and arena.

M4 performs substantially better, with an R2 of 0.822 and a

MAPE of 7.566%.

In a practical case of assuming minimal information, one

would probably use M4 instead of M1, M2, or M3 because

Apx, Acm, and Ae are visual metrics, and the particular arena

is inherent to the experiment. We could always measure these

variables and would have no reason not to; thus, not using M4,

in this case, would decrease prediction performance for no

experimental benefit. However, we present each model here

because selectively adding and/or modifying variables demon-

strates the performance benefit of each unit conversion, arena
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identity, and eccentricity without confounding the variables.

Additionally, likelihood ratio tests confirm that each model per-

forms significantly better than the last, so one could use any

model with confidence.

In many experiments, the sex and age of the animal is known.

Therefore, our fifth model, sex and non-genetic (M5), adds sex

and age as separate variables, reflecting the differences in

body composition between sexes and as a mouse ages. This

again provides a boost in accuracy and a reduction in error

values. In certain conditions, the strain of the mouse is also

known. Therefore, the sixthmodel, full (M6), introduces the strain

of the mouse as a variable. Here, we include an interaction term

between strain and sex because we observed that while males

are generally heavier than females, there are some strains for

which the opposite is true. The full model performs much better

than the previous models, M1–M5, achieving a mean R2 of 0.92

and a MAPE of 4.84% (Figure 3B). Visualizing the MAE and R2

values of each model illustrates their relative improvements un-

der cross-validation (Figures 3C and 3D). The performance

values for each model are compared in Table 2.

Models and performance
Effect of sex and genetic diversity

We observe large differences in true and predicted mean body

mass between sexes. In most, but not all, strains, males have

a higher percentage of fat than females and are larger.28 We

tested the performance of the full model (M6) on males and fe-

males. While females weigh less than males on average, our

model performs uniformly well across both females and males

(Figure 4A). The differences in performance are slight: females

and males have MAPEs of 4.82% and 5.17%, respectively.

Next, we tested the performance of the full model (M6) in

genetically diverse mice and measured the accuracy and preci-

sion of the model across 44 classical inbred, 7 wild-derived

inbred, and 11 F1 hybrid strains (Figure 4B). Most strains are be-

tween 20 and 30 g, with wild-derived strains likeMSM/MsJ at the

R2 = 0.75
MAE = 2.06 g
RMSE = 2.7 g
MAPE = 8.71 %
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Figure 3. Model performance

(A and B) Comparison of true mass, as measured

with a regular scale, and predicted mass, as

determined by our process. Data shown are a one-

test sample. R2, mean absolute error (MAE), root-

mean-square error (RMSE), and mean absolute

percentage error (MAPE) are presented. The 45�

line indicates a perfect prediction.

(A) Prediction quality for the base model (M1) ac-

counting for only segmentation area.

(B) Prediction quality for the full model (M6) ac-

counting for true size Ae, arena, sex, age, and

strain.

(C and D) Error and accuracy performance for

each model under 50-fold cross-validation.

(C) MAE across models. Each box shows the in-

terquartile range (IQR) and the black whiskers

reach the farthest point within 1.5 IQR of the end of

the box.

(D) R2 value across models.

Table 2. Model definitions and performance

Model Model input variables RMSE (g) MAE (g) MAPE (%) R2

Base (M1) Apx (px
2) 2.729 ± 0.070 2.072 ± 0.052 8.584 ± 0.210 0.767 ± 0.012

M2 Acm (cm2) 2.469 ± 0.058 1.814 ± 0.042 7.528 ± 0.179 0.810 ± 0.010

M3 Acm (cm2), arena 2.416 ± 0.052 1.765 ± 0.035 7.314 ± 0.156 0.818 ± 0.009

Geometric (M4) Ae (cm2), arena 2.322 ± 0.052 1.739 ± 0.039 7.223 ± 0.174 0.832 ± 0.010

Sex and non-Genetic (M5) Ae (cm2), arena, sex, age 2.201 ± 0.065 1.622 ± 0.037 6.774 ± 0.167 0.849 ± 0.010

Full (M6) Ae (cm2), arena, sex, age, strain 1.606 ± 0.069 1.162 ± 0.031 4.836 ± 0.137 0.920 ± 0.007
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low end and obesity models such as NZO/HILtJ on the high end

of the distribution (labeled in Figure 4B).We quantify and demon-

strate themodel’s performance by averaging the predictions and

calculating their variability across individual strains. The model

accurately predicted the mean mass across highly genetically

diverse mice (Figure 4B). Our model predictions also precisely

capture the variability in observed weights across each strain

(Figures 4B, error bars, S2, and S3). We quantify the mean

observed and predicted mass and standard deviation for each

strain in Table S1. Additionally, we retrain model M6 on our entire

dataset and present the observed and predicted RSDs in mass

for each strain, demonstrating that real strain-level variation is

captured in our model (Figures S2 and S3). This final model

can be used for inferring on any new data. We conclude that

our model performs well across sex and diverse genetics.

Longitudinal tracking of mouse mass
We trained our visual mass prediction models using genetically

diversemouse strains and ages tested only once in the open field.

This was a reasonable approach to build a model that generalizes

to the visual diversity seen in the mouse. Next, we determined

whether our approach could consistently track the weight of the

same mouse over time. We reasoned that if a mouse suddenly

lost weight or was under treatment that results in adverse effects,

our non-invasive approach would have diagnostic utility. We

manually assessed the body mass of 16 mice and then tested

them in the 1-h open field over a 22-day period. Specifically, we

tested 4 C57BL/6J females and 12 C57BL/6J males every day

for 13 days, followed by an additional test day 9 days later (day

22). We then applied the previously trained M1–M6 models to

these data and evaluated the performance using quantitative

and qualitative methods. We found that the full model, M6, per-

formed best in terms of MAE (1:54±0:08), RMSE (3:51± 0:33),

Strain
129P3/J
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Figure 4. Full model (M6) performance by

sex and strain

(A) Full model performance faceted by sex withR2,

MAE, RMSE, and MAPE values presented for

males (in blue) and females (in red).

(B) Full model performance faceted by strain

(mean ± standard deviation). The four strains from

Figure 1B are labeled here, along with the strains

with the smallest and the largest mean areas. The

test and training data are the same as in Figure 3B

for ease of comparison. The full results are pre-

sented in Table S1.

MAPE (5:4%±0:25%), and bR2 = 0:87

(Figures 5A and 5B). Qualitatively, we

found that the visual prediction of the

mass of each of the 16 animals closely

mirrored the manually measured mass

(Figure 5C). These results demonstrate

that our models perform well when

tracking the mass of individual animals

over time.

Multi-day visual mass tracking with
multiple mice in home environment

To extend the applicability of our methods, we further tested the

performance of our models in a long-term housing environment

with multiple mice. We collected video data in a modified open-

field environment with bedding, food, and awater Lixit. This envi-

ronment, the JAX Animal Behavior System (JABS), has been

described in a preprint.23 We housed three female C57BL/6J

mice in this arena for 4 continuous days. The mass of each ani-

mal wasmeasuredmanually at the beginning of the 4-day exper-

iment and used as ground truth. We randomly selected 26 video

clips of �30 s or less for analysis from the active (dark) phase

over a 4-day period. Since our visual mass models were trained

on single mice, we selected 8 clips in which the mice were phys-

ically separated and distinct for analysis (pipeline summarized in

Figure 6A). Each of these 8 clips is 10–20 s long and has a reso-

lution of 800 3 800 px. The segmentation model used for single

mice in the open field was trained on diverse mice in a plain open

field without bedding, food, or water lixit.20 It does not perform

well in the home environment with increased complexity, and a

new segmentation model was needed. To predict multi-mouse

segmentation, we applied the track anything model (TAM)

approach.29 This is a video extension of the segment anything

model (SAM)30 that propagates segmentation predictions for-

ward in time. We initialized the mice in a video using a manual

keypoint prompt, which is typically 1 click per animal to indicate

it as an object to track. After that, the model can predict the seg-

mentations of that mouse for the remainder of the video. We

visually inspected the performance of this model to ensure the

quality of the segmentation. We confirmed that the identities of

all mice remained consistent within a video by manually inspect-

ing each frame of each video. We also manually matched the

identities of individual mice between videos. The resulting seg-

mentation mask for each mouse was used for modeling us-

ing M6.

ll
OPEN ACCESSDescriptor

Patterns 5, 101039, September 13, 2024 7



We find that M6 has very good performance in this new envi-

ronment and, on average, closely follows the truemass over time

in each video (Figure 6B, solid colored lines represent themedian

mass prediction in the time interval). It achieves a median error

below 10% in all three mice: mouse 1 achieves a 3.15% mean

error, mouse 2 achieves a 6.41% mean error, and mouse 3

achieves a 9.73% mean error (Figure 6C). Upon inspection of

the videos, we observed that the slightly higher error in mouse

3 appears to be due to its behavior. This mouse frequently jumps

onto the walls and onto the lixit. Regardless, these error levels

A B

C

Figure 5. Successful longitudinal tracking of individual mouse mass for 22 days in the open field

Mouse masses were manually (black) and visually (color) assessed over a 22-day period in the 1-h open field for the same animal.

(A) Comparison of performance (mean ± standard error) of previously trainedmodels on prediction of mass on new data from a longitudinal experiment. We found

that M6 had the lowest error (MAE, RMSE, and MAPE).

(B) A scatterplot comparison of predicted and observedweights of the 16mice (matching colors in B andC, bR2 = 0.87). Points on the dashed diagonal line indicate

perfect predictions.

(C) Individual mouse data on each day. Plots of predicted weights (color) to observed weights (black) across each mouse (panels) for each day of the experiment.

Graph title panel text color indicates sex of the animal (females are green and males are blue).
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are comparable to the observed performance in the 1-h open

field, and we conclude that our method can be applied toward

long-term home monitoring conditions.

DISCUSSION

Body mass is an important measure of health in mice and is

widely used as a feature of both veterinary intervention and

behavioral and drug trial experiments. However, frequently

monitoring body mass by hand is impractical over a long time

period and, more importantly, can negatively affect the actual

experiment being performed. We sought to test whether visual

methods provide adequate accuracy and precision to be a viable

alternative to manual weighing animals. Mice are highly deform-

able and change their posture in very short timescales. In addi-

tion, since our camera is positioned relatively high above the

mouse, only 0.6% of the pixels in the video frame belong to it.

Thus, we do not have a very high-resolution view of a highly

deformable object. To solve this problem, we applied computer

vision methods to develop models that predict the body mass of

an individual mouse in an open-field arena. We developed six

models for this, each using a selection of visual information ex-

tracted from the segmentation and ellipse-fit masks, the partic-

ular arena a mouse was recorded in, and biological attributes

of the mouse such as age, sex, and strain.

There are several advantages to our approach. First, our

approach uses an explainable machine learning approach. The

first step of our approach is to generate segmentation masks

for themouse. Segmentation is highly flexible and one of the old-

est and most established computer vision tasks, particularly for

biomedical images.31,32 We selected a segmentation step to

enable observable detection for accuracy shifts. For example,

if a mouse escapes the arena, we can detect that no segmenta-

tion is predicted and make no body mass prediction.

Modern methods of segmentation improve upon traditional

methods by using neural networks.29,30,33–36 Segmentation neu-

ral networks can be trained using much lower training data, and

there are already pretrained models for general purpose seg-

mentation. For instance, we trained a segmentation network

for sleep-state prediction using 313 frames.37 The creation of

training data in different visual environments should be much

easier with new, more general segmentation foundation models
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Figure 6. Successful visual mouse mass assessment over a multi-day experiment with multiple mice in a home environment

(A) Three mice were cohoused with bedding, food, and water for 4 continuous days. We used the TAM to segment each mouse and applied M6 to visually predict

mouse mass.

(B) We selected 8 video clips and predicted mass visually in every frame using M6 (colored lines). Each mouse’s median predicted mass is shown as a colored

horizontal line, and the true masses are shown as two black dashed lines (two mice had equal measuredmasses). The manual mass wasmeasured at the start of

the experiment.

(C) MAPE of mass prediction for each of the three mice over the 8 videos. Each box shows the interquartile range (IQR) and the black whiskers reach the farthest

point within 1.5 IQR of the end of the box.

ll
OPEN ACCESSDescriptor

Patterns 5, 101039, September 13, 2024 9



such as the SAM30 and TAM29 and self-supervised models such

as DINOv2.38 These models seem to work well for segmentation

of animals with minimal supervision as demonstrated here.

Indeed, in our home environment experiment, we were able to

segment mice with minimal supervision using the TAM. After

segmentation, we apply well-understood and explainable tech-

niques including unit transformations, normalization, and linear

regression modeling. Thus, our method is flexible for adoption

to new environments and organisms without the burden of

creating large training data while producing explainable results.

We envision that such a system can be used to assess mass in

a changing table that is routinely used in mouse facilities.

A second advantage of our approach is the use of highly

diverse mouse strains, with varied coat colors, sizes, and behav-

iors, for training our models. This ensures that the model can

handle diverse visual and size distributions that may be seen in

real-world settings. Each of our six models has different experi-

mental applications. Though it is clear that the full model has the

highest accuracy and lowest error, it is not necessarily suitable

for all experiments. Practically, one would apply the geometric,

non-genetic, or full model to an experiment, not M1, M2, or

M3. While in some sense, M1 is the most general of all the

models, there is no information in the geometric model (M4)

that is not easily attainable. Its two variables, Ae and arena, are

derived from the same base information in the video, not from

any further information about the mouse itself. For the same rea-

sons, it would equally make sense to use M4 instead of M2 or

M3. As mentioned in the previous section, it is still useful to pre-

sent M1–M3 because they show the benefit of additions and

modifications to the models.

With fine-tuning to the particular environment, the geometric

model (M4) can be applied to all open-field videos of similar

size and resolution with an individual mouse. However, it would

be a rare mouse model experiment that intentionally did not take

into account the sex and age of the mice, as these are often

important variables. The sex and non-genetic model (M5), as

its name suggests, would be very useful for experiments where

collecting strain information is unfeasible or undesirable. A key

example of this is experiments that use genetically diverse pop-

ulations of mice, such as diversity outbred or other genetically

heterogeneous populations that are often used for quantitative

genetic studies.39,40 The full model (M6), which includes genetic

information, is readily applicable in studies in a defined genetic

background. Our full model would provide the highest accuracy

monitoring of body mass in these areas. Furthermore, any clas-

sical mouse experiment with inbred strains that lends itself to

having one mouse in an open-field environment would benefit

from this model, especially behavioral experiments where

inducing anxiety potentially introduces bias.

To avoid drawing erroneous conclusions about medically con-

cerning fluctuations in body mass, this type of visual mass pre-

diction is helpful for healthmonitoring only if its error is well within

the bounds of human intervention points. Following the IACUC

Humane Intervention guidelines, it is necessary to intervene,

typically with euthanasia, if a mouse loses more than 20% of

its body mass compared to similar control animals. As an

example, if an inbred mouse lost 20% of its body mass during

an experiment, then our results indicate that we could use M6,

the full model, to predict that the mouse lost �15.2%–24.8%

of its body mass, which is a small enough range that we know

something is likely wrong with it and should be investigated

further. In this way, our visual approach can serve well as a

wide-screen diagnostic tool for health monitoring in its current

state. For studies that do not require adverse event detection,

the sensitivity of our method has added value. For instance, a

drug or genetic manipulation that leads to slight (�5%) change

in mass can be detected accurately, as demonstrated by our

multi-day individual tracking. Although a 5% change in mass

may seem low, in human clinical trials for weight loss drugs,

the number of participants who achieve at least a 5% decrease

inmass is the primary result that is reported.41 This level of sensi-

tivity makes this a useful tool beyond health checks for preclini-

cal animal studies.

Here, our goal is to quantify the accuracy and precision of visual

mass determination using an existing video acquisition system

without optimizing the data stream for mass determination. Most

labs collect video for behavior analysis, and we reason that if a

video stream has enough information to quantify behavior, then

it should be adequate for mass determination. We demonstrate

that the error using the existing video is within tolerance to meet

the IACUC requirements of mass change and provide a viable

alternative tomanualmassassessment.Whileourmodelsachieve

goodperformance, they are notwithout error. These errors can be

broken down into different types based on their source of intro-

duction: equipment spatial resolution, limitations of our selected

measurement, and observation interval. Since we image at a

spatial resolution of 4803 480,where themouse occupies a small

percentage (<1% of area) of the visible area, increasing the reso-

lution of the image should reduce the error. Our measurement is

that of the silhouette of themouse froma top-down viewing angle.

This alone does not capture the complex posture of the animal.

Using calibrateddepth cameras toprovide a better understanding

of the animal’s volume would reduce the prediction error. Such

cameras have been used in industrial farming17,18 and unsuper-

vised behavior analysis of rodents.42 Finally, the observation inter-

val limits howmuch information can be used tomake a prediction.

Ideally, predictions could be made with a couple of frames. How-

ever, we observed that there is high variation in area across the

courseofanopen-field assay, as themouseperformsdifferent be-

haviors. This variation necessitates longer observational intervals

to ensure accurate bodymass predictions. Yet, in our home cage

experiment, we achieved a low predictive error using only �20-s

intervals, which suggests that functional predictions can be

made on shorter time frames.

Future development of thismethod can expand into continuous

monitoring in shoebox-size home cages. Home cage settings can

vary widely between experimenters and are not standardized,

making visual prediction of body mass a greater challenge.43–45

However, many experiments are better suited to social housing,

and visually tracking body mass in home cages would be very

useful in production colonies. Our home environment results us-

ing the SAM show that with the addition of more general segmen-

tation techniques, our models can be applied to multiple mice

housed together in more complex environments. Furthermore,

the camera may bemuch closer to the animal in home cage envi-

ronments and may also contain perspective, distortion, occlu-

sion, and even behavioral challenges such as huddling and nest-

ing. Our methods can be extended to handle these conditions in
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the future. Our methods can also be extended to other organisms

such as rats and non-human primates, where manual mass

assessment is much harder.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed

to and will be fulfilled by the lead contact, Vivek Kumar (vivek.kumar@jax.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Original video data have been deposited toHarvard Dataverse: https://doi.org/

10.7910/DVN/SAPNJG with the ‘‘mass’’ tag.46 JAX is the owner of this dataset

and has openly released it under the ‘‘CC BY-NC-SA’’ license. This license is

described in detail here (https://creativecommons.org/licenses/by-nc-sa/4.0/)

and allows non-commercial use and reuse (share alike) of the data with proper

attribution.

The segmentation neural network code and weights have been previously

published and are available.20 All code is publicly available through the Kumar

Lab GitHub (https://github.com/KumarLabJax/visual-mouse-weight/tree/v1.

1.0). The version of code used in this paper is archived on Zenodo.47

Mice

All mice were obtained from The Jackson Laboratory production colonies. The

mouse videoswere obtained from a previously conducted strain survey of over

2,400 mice from 62 strains, including at least 4 male and 4 for almost every

strain20,48 (see Table S1). We selected 2,028 individual mice out of that survey,

leaving out those with missing features in the data like age or arena recorded.

Our mice vary in age from 7 to 81 weeks old, with a mean age of 11 weeks.

Each mouse was weighed with an analytical laboratory scale (Ohaus) immedi-

ately prior to recording. The sampled body weights range from 9.1 to 54 g with

a mean of 24.7 g.

Arena recording setup

All behavior methods and datasets have been previously described.20,48,49 We

have published detailed descriptions of our data acquisition methods, hard-

ware, and software.23 Briefly, all videos were recorded at 30 fps, have 8-bit

monochrome depth, run for 55 min, and are saved as 480 3 480 px files.

Each camera was mounted approximately 100 cm above each arena, with

zoom settings tuned to 8 px/cm. Variations in this zoom were normalized

by the corner detection approach described in the results.27 We recorded in-

dividual mice in six near-identical open-field arenas. The arenas are 523 523

23 cm and built with white PVC plastic floors and gray PVC plastic walls.

A white 2.54-cm chamfer was added to all inner edges for easier cleaning.

Each arena was illuminated by a light-emitting diode light producing

200–600 lux of light.

Statistical analysis

To predict the weight of the mouse, we fit two simple linear regression models

(M1, M2) and four multiple linear regression models (M3, M4, M5, M6) using

video and animal-specific covariates. We describe our model as follows:

yi = b0 + b1areai + b2agei + b3sexi +
XB
b = 1

barena
b arenaib

+
XS
s = 1

bstrain
s strainis +

Xs

s = 1

gissexi 3 strainis + ei ; ei �N
�
0; s2

�
;

where yi denotes the weight of the mouse i; bp;p = 1;2;3, barenab , and bstrains are

the regression coefficients associated with areai ; agei ; sexi ; arenai ; and straini
covariates for mouse i; gi represents the interaction effect between strain and

sex; and ei denotes the error term. The regression coefficients b and g are esti-

mated from the data using the least-squares algorithm from the data so as to

use the model to predict the weight of a new mouse. Further,

strainis =

�
1 if mouse i belongs to strain s
0 if mouse i does not belong to strain s

and

arenaib =

�
1 if mouse i belongs to arena b
0 if mouse i does not belong to arena b

Each of our six models (M1–M6) can also be conveniently described as

follows:

M1 : weight � Apx ;

M2 : weight � Acm;

M3 : weight�Acm + arena;

M4 : weight�Ae + arena;

M5 : weight�Ae + arena+ age+ sex; and

M6 : weight�Ae + arena+ age+ sex+ strain+ sex � strain:

To assess the accuracy of our model predictions, we split the data randomly

into two parts: train (70%) and test (30%). The test set served as an indepen-

dent evaluation sample for themodels’ predictive performance.We performed

50-fold cross-validation to allow for a proper assessment of uncertainty in our

test set results. The models were compared in terms of MAE, MAPE, RMSE,

and R2. These are defined as follows:

MAE =
1

n

Xn

i = 1

jyi � byi j;

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðyi � byiÞ2
s

;

MAPE =
1

n

Xn

i = 1

����yi � byi

yi

���� 3 100%; and

R2 = Corðy; byÞ2;
where y and by are the true (observed) and predicted values from the model,

respectively.

We also performed likelihood ratio tests between each successive model

that confirmed that each higher-complexity model provides a higher goodness

of fit than the previous model, i.e., M2 provides a significantly higher goodness

of fit than M1, and so on. We fitted our models in R and performed statistical

tests with the lmtest and AICcmodavg packages.

Segmentation and modeling in the home environment

To predict multi-mouse segmentation, we apply the TAM approach.29 This is a

video extension of SAM30 that propagates segmentation predictions forward

in time.We initialize the mice in a video using amanual keypoint prompt, which

is typically 1 click per mouse to indicate it as an object to track. After that, the

model can predict segmentations for that mouse for the remainder of the

video. We discard frame-wise prediction data when the predicted segmenta-

tion masks no longer predict on the mouse. Additionally, we discard entire

videos when mice were huddling or occluded because obtaining accurate

segmentation in these difficult situations is beyond the scope of this paper.

Our segmentation method used for single mouse experiments, which our

mass prediction models are trained on, includes a 1-px border around the

mouse. The SAM does not predict this border. Additionally, this long-term data

are imaged at 1.73 the resolution of the open-field experiments (see experi-

mental procedures). As such, we add a 2-px border to the raw TAM predictions

by applying two333 dilationmorphological filters.Wechose to use 20-s videos

(as opposed to the 55-min videos used in our open-field modeling) because the

TAM is RAM hungry. Larger videos would cause out-of-memory errors, and
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tracking tends to fall apart before then.Weextracted the samevisual parameters

previously described from this dilated segmentationmask and fed them intoM6,

just as before.We only used one cage in this experiment, so unit conversion can

be done manually without using the corner detection needed in the open-field

experiments.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.101039.

ACKNOWLEDGMENTS

We thank Kumar Lab members for helpful advice and comments. We thank

Kayla Dixon, a Colby College Lunder Fellow in the Kumar Lab, who initiated

the project. We thankMarina Santos, TomSproule, and Sean Deats for behav-

ioral testing. This work was funded by The Jackson Laboratory Directors Inno-

vation Fund, National Institutes of Health, National Institute of Drug Abuse

DA051235 and DA048634 (NIDA; V.K.), National Institute on Aging

AG078530 (NIA; V.K.), National Institute of Neurological Disorders and Stroke

NS078795 (NINDS; M.G.), and the C.C. Little Scholarship Fund (M.G.).

AUTHOR CONTRIBUTIONS

M.G., B.G., and V.K. designed the experiments and analyzed the data. G.S.

andM.G. carried out statistical modeling analysis. All authors wrote and edited

the paper.

DECLARATION OF INTERESTS

The Jackson Laboratory has filed a patent on the methods described here.

Received: August 10, 2023

Revised: February 20, 2024

Accepted: July 11, 2024

Published: August 7, 2024

REFERENCES

1. Eknoyan, G. (2008). Adolphe quetelet (1796–1874)—the average man and

indices of obesity. Nephrol. Dial. Transplant. 23, 47–51.

2. Negri, E., Pagano, R., Decarli, A., and La Vecchia, C. (1988). Body weight

and the prevalence of chronic diseases. J. Epidemiol. Community Health

42, 24–29.

3. Knight, J.A. (2011). Diseases and disorders associated with excess body

weight. Ann. Clin. Lab. Sci. 41, 107–121.

4. Vandamme, T.F. (2014). Use of rodents as models of human diseases.

J. Pharm. BioAllied Sci. 6, 2–9.

5. Ahloy-Dallaire, J., Klein, J.D., Davis, J.K., and Garner, J.P. (2019).

Automated monitoring of mouse feeding and body weight for continuous

health assessment. Lab. Anim. 53, 342–351.

6. Hankenson, F.C. (2014). Critical Care Management for Laboratory Mice

and Rats (Taylor & Francis Group), pp. 25–42.

7. Talbot, S.R., Biernot, S., Bleich, A., van Dijk, R.M., Ernst, L., Hager, C.,

Helgers, S.O.A., Koegel, B., Koska, I., Kuhla, A., et al. (2020). Defining

body-weight reduction as a humane endpoint: a critical appraisal. Lab.

Anim. 54, 99–110.

8. Hurst, J.L., and West, R.S. (2010). Taming anxiety in laboratory mice. Nat.

Methods 7, 825–826.

9. Meijer, M., Sommer, R., Spruijt, B., van Zutphen, L., and Baumans, V.

(2007). Influence of environmental enrichment and handling on the acute

stress response in individually housed mice. Lab. Anim. 41, 161–173.

10. Dohmen, R., Catal, C., and Liu, Q. (2021). Computer vision-based weight

estimation of livestock: a systematic literature review. New Zealand

Journal of Agricultural Research 65, 227–247.
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