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Genome Biology

Enhlink infers distal and context-specific 
enhancer–promoter linkages
Olivier B. Poirion1*, Wulin Zuo1, Catrina Spruce2, Candice N. Baker2, Sandra L. Daigle2, Ashley Olson2,3, 
Daniel A. Skelly2, Elissa J. Chesler2,3, Christopher L. Baker2,3† and Brian S. White1† 

Abstract 

Enhlink is a computational tool for scATAC-seq data analysis, facilitating precise 
interrogation of enhancer function at the single-cell level. It employs an ensemble 
approach incorporating technical and biological covariates to infer condition-specific 
regulatory DNA linkages. Enhlink can integrate multi-omic data for enhanced speci-
ficity, when available. Evaluation with simulated and real data, including multi-omic 
datasets from the mouse striatum and novel promoter capture Hi-C data, demonstrate 
that Enhlink outperfoms alternative methods. Coupled with eQTL analysis, it identified 
a putative super-enhancer in striatal neurons. Overall, Enhlink offers accuracy, power, 
and potential for revealing novel biological insights in gene regulation.

Keywords: Single-cell, Linkage analysis, Enhancers inference, Chromatin accessibility, 
Machine-learning

Introduction
Gene transcription is regulated by non-coding DNA elements called enhancers. Each 
consists of dense clusters of recognition motifs for sequence- and cell type-specific tran-
scription factors (TFs), which bind and subsequently recruit coregulators, chromatin 
remodelers and modifiers, and RNA polymerase II [1]. A single gene can be regulated by 
multiple enhancers, with the cell type-specific activity of its enhancers conferring spa-
tiotemporal control over it [2, 3]. Enhancer disruption and its concomitant modulation 
of target gene expression are increasingly recognized as disease-causing mechanisms 
[4, 5]. In complex diseases, > 90% of single nucleotide polymorphisms (SNPs) identified 
by genome-wide association studies (GWAS) are in non-coding regions of the genome 
far from promoters and potentially within enhancers [5]. The link between an enhancer 
and its target gene (or, equivalently, promoter) needs to be established and is an ongoing 
challenge in the field.

Enhancer–promoter links can be directly detected with experimental techniques 
including Hi-C [6, 7]. However, complex protocols, high cost, low resolution [8], 
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and their inability to detect interchromosomal interactions [1] currently limit their 
applications.

As an alternative, Pliner and colleagues demonstrated how links can be inferred com-
putationally by exploiting measurements of chromatin accessibility from single-cell 
ATAC-seq (scATAC-seq) data at a gene’s promoter and its active enhancers during 
transcription. The authors first inferred open chromatin regions (OCRs) from “peaks” 
of reads in scATAC-seq data and applied a computational method, Cicero, to identify 
enhancer–promoter pairs with correlated peaks of chromatin accessibility [9]. Cicero 
handles the sparsity of scATAC-seq data by aggregating binary accessibility data from 
similar cells into counts, with related cells determined through similarities in a low-
dimensional embedding. It reduces batch effects, principally arising from library size, 
by adjusting aggregated counts. Finally, it addresses the high dimension inherent in 
genome-wide discovery by inferring regularized covariance matrices describing acces-
sibility peaks.

Following Cicero’s pioneering approach, linkage inference from scATAC-seq has 
become a popular strategy in various exploratory [10, 1112] and methodological studies 
[13]. Several other recent methods can also be used to infer enhancer–gene links from 
scATAC-seq data. Signac [14], ArchR [15], and SnapATAC [16] are comprehensive tool-
kits for scATAC-seq analysis that include linkage inference methods. In contrast, Robus-
tlink [17] is a novel approach specifically tailored for linkage inference. ArchR computes 
the Pearson correlation between accessible regions represented in a low-dimensional 
embedding of aggregated cells and derives a p-value from it. Signac also computes Pear-
son correlation p-values, but instead does so using a random background of enhancers. 
SnapATAC fits univariate logistic regression models to chromatin accessibility using 
gene expression as features. Finally, Robustlink creates meta-cells by aggregating cells 
from graph communities and infers permuted score distributions to derive p-values 
from the correlation scores. Robustlink, SnapATAC, and Signac are designed to asso-
ciate enhancer accessibilities with gene expression from either a multi-omic dataset or 
a matching scRNA-seq dataset which is combined with the scATAC-seq using a label 
transfer procedure [16]. In contrast, ArchR has the ability to process scATAC-seq alone 
or in combination with scRNA-seq. To summarize, these approaches leverage correla-
tions between enhancers and promoter accessibility or gene expression at the single-cell 
level to deduce enhancer–gene links.

However, single-cell experiments have continued to grow in size and complexity since 
these methods were developed, not only leading to exquisite contextual specificity for 
inference on enhancer–promoter interactions but also producing additional difficul-
ties that are not adequately addressed by existing computational methods. For example, 
our recent murine type 2 diabetes (T2D) study made use of a factorial and hierarchical 
experimental design to characterize the contribution of genetics, sex, and diet to cellular 
heterogeneity in two metabolism-related tissues (Poirion et al., 2024 [18]), by perform-
ing large-scale, single-cell sequencing across technical batches. Existing methods can 
not directly model the impact of biological covariates nor can cell-binning approaches 
control for technical covariates that differ across cells within a bin.

To address the challenges of studies with complex experimental designs, we developed 
Enhlink, a novel approach for inferring enhancer–promoter co-accessibility. It detects 
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biological effects and controls technical effects by incorporating appropriate covariates 
into a nonlinear modeling framework involving single cells, rather than aggregates. It 
selects a parsimonious set of enhancers associated with a promoter to smooth the sparse 
representation of any individual enhancer while prioritizing those with the largest effect. 
To do so, Enhlink uses a random forest-like approach, where cell-level (binary) acces-
sibilities of enhancers and biological and technical factors are features and the cell-level 
accessibility of a promoter is the response variable. If multi-omic chromatin accessibility 
and gene expression measurements are simultaneously available for each cell, Enhlink 
can further prioritize enhancers by associating them with the expression of the pro-
moter’s target gene. Unlike existing methods, Enhlink has the ability to predict both 
proximal and distal enhancer–gene linkages and identify linkage specific to biological 
covariates, while also integrating a simulation workflow that utilizes experimentally vali-
dated enhancer–promoter signals to optionally estimate prediction accuracy.

Using simulation parameterized by experimentally validated enhancer–promoter 
pairs, we show that Enhlink minimizes false positives and negatives relative to other 
approaches. We further demonstrate that Enhlink results are resilient to technical 
batches in our T2D study and that it has superior precision evaluated using enhancer–
promoter interactions detected from paired promoter capture (PC)Hi-C data. Finally, 
we generated a multi-ome single-nuclei (sn)ATAC- and RNA-seq dataset from a study 
of sex and strain differences in the mouse striatum, a brain region involved in motivated 
learning and associated with acute and chronic effects of drug addiction [19, 20]. After 
identifying the two main neuron populations defined by their expression of dopamine 
receptor 1 (Drd1) or 2 (Drd2), we inferred neuron-specific enhancer–promoter links 
using both promoter accessibility and gene expression. We identified strong putative 
cis and transregulatory regions among the two classes of neurons that we also inter-
sected with a set of genetic variants. Notably, we identified several enhancers 500  kb 
downstream of the Drd1 promoter that were directly correlated with the regulation 
of multiple distal genes involved in the Drd1/Drd2 genetic program and may act as a 
super-enhancer. Enhlink should similarly enable the discovery of enhancer–promoter 
co-accessibility in other complex scATAC-seq and multi-omic snATAC-/snRNA-seq 
datasets.

Results
Inferring biologically meaningful co‑accessibilities from sc/snATAC‑seq data

To assess enhancer–promoter co-accessibility inference from snATAC-seq data, we used 
the results of a previously published human heart study (CARE) that generated snA-
TAC-seq data and experimentally validated enhancer–promoter pairs [21]. We focused 
on the KCNH2 promoter, for which the study identified an enhancer with a nearby risk 
variant (rs7789146) (Fig. 1A) linked to atrial fibrillation. That study validated the role of 
this variant on enhancer function via CRISPR-Cas9 genome editing of a human pluripo-
tent stem cell-derived cardiomyocyte (CM) cell line [21]. Here, we determined whether 
the accessibilities of the rs7789146 enhancer and KCNH2 promoter correlated across 
cells, by representing each as a Boolean vector whose entries reflect whether at least 
one snATAC-seq read was present within the respective region and cell. We then com-
puted the accuracy, recall, and f1 score between the promoter and the enhancer vectors, 



Page 4 of 32Poirion et al. Genome Biology          (2024) 25:235 

separately for atrial (aCM) and ventricular (vCM) cardiomyocytes and compared them 
to null score distributions (Fig. 1B and S1; see “Methods”). We expanded this analysis to 
the promoter of MYL2 and three of its putative enhancers, also highlighted by the origi-
nal study [21] (Figure S1). In all cases, the f1-score and recall values were significantly 
higher than random (p < 0.05; Fig. 1B and S1). These results further justify computational 
methods that infer enhancer–promoter links from their co-accessibility in snATAC-seq 
data, while the enhancers associated with the KCNH2 and MYL2 promoters provide a 
means of evaluating such methods.

Multi‑omic inference of condition‑specific enhancer–promoter links with Enhlink

Enhlink is a new approach that has been designed as an efficient computational frame-
work for inferring co-accessibilities between OCRs, such as enhancers and promoters, 
from snATAC-seq data that are robust to technical batch effects. Enhlink parsimoni-
ously identifies links between enhancer genomic regions, identified by peaks, and target 

Fig. 1 Enhlink infers linkage by modeling covariates, clusters and the surrounding enhancers. A Chromatin 
accessibility tracks with enhancer–promoter co-accessibility links inferred with Enhlink from human atrial 
(aCM) and ventricular (vCM) cardiomyocytes. The enhancer highlighted in blue was previously experimentally 
validated. B Accuracy (f1-score, precision, recall) scores computed from validated vCM enhancer/promoter 
pair for the promoter of KCNH2 using scATAC-seq data and compared to distributions of f1-scores, 
precisions, recalls obtained from random enhancers. High f1-score indicates that overall cells have similar 
accessibilities at the promoter and the enhancer. C Enhlink models a target region as a function of its 
surrounding genomic regions (i.e., enhancers) and biological and technical covariates. Artificial regions are 
added to reach a sufficient number of variables for computing feature scores and p-values (t-tests). Enhlink 
can optionally perform a second-order analysis to identify covariates associated with links. D Enhlink can 
leverage multi-omics datasets by modelling a target region by either its accessibility or its expression and 
by intersecting the two resulting sets to identify links shared across both modalities. E Processing time for 
detecting associations (scenario I) for 200 promoters and their cis (+ / − 250 kb) OCR features from the islet 
dataset using four processes and (scenario II) between 1 promoter and 260,344 cis and trans OCR features 
using one process. Processing time (left axis for I and right for II) as a function of number of threads per 
process (bottom axis for I and top for II)
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genomic regions such as promoters (but not limited to) across genome-wide candidates. 
It can also prioritize associations supported by paired (multi-omic) expression data, 
when available (Fig. 1C, D, and S2). For simplicity, throughout the manuscript, we refer 
to these genomic features as “enhancers” and the target regions as “promoters.” Enlink 
identifies OCRs and biological factors that “explain” a promoter, independent of techni-
cal factors (see “Methods”). It does so by using single-cell representations of features—
promoters, enhancers, and biological and technical factors—where each is a binary 
vector with an element corresponding to the accessibility (or factor label) of each cell. 
The candidate set of enhancers may be limited to a genomic range surrounding the pro-
moter (+ / − 250  kb, by default) to approximate the promoter’s topologically associat-
ing domain (TAD)—i.e., a three-dimensional subregion of the genome that sequesters 
self-interacting regions [22], or may include all peaks genome-wide to model distal [1] 
and indirect links. Biological and technical factors such as batch, lineage, and genotype 
and categorical factors can be represented in full generality through “one-hot encoding.” 
Enhlink uses a binary decision tree to iteratively select features that maximize a modified 
information gain (see “Methods”). It computes an ensemble of such trees, bootstrapping 
the cells and selecting a random subset of features in each tree, in a manner similar to 
random forests. Bootstrapping accounts for heterogeneity across datasets and enables 
the calculation of p-values for each enhancer or biological factor. The depth of each tree 
is controlled by an intuitive hyperparameter, which effectively sets the expected number 
of enhancers per promoter (four, by default). This depth and random feature subsetting 
prioritize a reduced set of enhancers (or biological factors) having the strongest, inde-
pendent association with the promoter.

Enhlink can further prioritize these snATAC-seq-derived enhancers by integrating 
mRNA measurements simultaneously assayed along with chromatin accessibility on 
each cell [23]. When such data are available, Enhlink identifies enhancers using both 
the promoter accessibility profiles and their associated gene expressions. By retaining 
enhancers that are concordant in both modalities, Enhlink enhances the likelihood of 
association between the identified enhancers and their target genes (Fig. 1D). Enhlink 
then refines the snATAC-seq-derived set of promoter-associated enhancers by intersect-
ing them with those derived from snRNA-seq.

Finally, Enhlink can identify enhancers active in a context-specific manner, e.g., those 
associated with a promoter in a specific biological condition or those cooperating with 
another promoter-linked enhancer. This is done via a second-order analysis in which the 
intersection (i.e., product of binary vectors) of a promoter and a biological factor (in the 
first case) or of a promoter and enhancer (in the second) are substituted for the acces-
sibility profile of a promoter in the above framework (Fig. 1C).

Thanks to the modified information gain (see “Methods”), Enhlink is capable of deter-
mining the correlation direction (either positive or negative) of the inferred links. In 
all the following analyses, we restricted Enhlink (see Table S1), focusing on identifying 
potential enhancers rather than repressors or insulators. In addition, we computed the 
ratio of negatively correlated links relative to the total number of links across the nine 
cell populations investigated in the human heart study mentioned earlier. Our findings 
revealed that the proportion of negatively correlated links varied from 4 to 15% among 
different cell populations (Figure S3).
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Enhlink implementation and speed

Enhlink achieves its computational efficiency through its implementation in Go (https:// 
go. dev/), a programming language optimized for CPU and memory usage [24]. It com-
putes each decision tree within a distinct thread, allowing computational speed to scale 
with the number of threads used (Fig. 1E). Additionally, it can distribute the computation 
of a set of promoters or a grid of hyperparameters over multiple “processes”, improving 
the computational time while preserving the amount of memory needed on high-perfor-
mance computing (HPC) clusters. Enhlink processed 200 promoters over 100,720 cells 
in 55 s using ten threads in each of four processes on a cluster of 52 CPUs and in 167 s 
with 2 threads in each of 4 processes (Fig. 1E). Analysis of a single promoter using all 
295,089 genome-wide peaks took approximately 700 s (Fig. 1E). These processing times 
could have been further reduced with little impact on performance by randomly down-
sampling cells or peaks, as described in the next section. Memory usage only increased 
marginally with the number of threads and processes. Overall, Enhlink’s execution time 
for each promoter is linearly proportional to the number of trees in the ensemble, the 
number of enhancer peaks considered as features, and the number of cells, while it is 
exponentially dependent on the depth of each tree, and inversely proportional to the 
total number of threads used (across all processes). We compared the processing time 
of Enhlink with the processing time of our own parallelized implementation of a Chi2 
procedure (see “Methods”), written in Python. The computational speed of a Chi2 pro-
cedure depends only on the size of the contingency table, thus making it in theory much 
faster to compute. However, we noticed that the procedure became slower than Enhlink 
when using a higher number of threads (Figure S4), highlighting higher overhead in the 
Python implementation and emphasizing the importance of the software technology 
used. Enhlink takes as input sparse matrices in an MTX format compatible with Cell 
Ranger and easily generated from Python and R workflows. Enhlink open-source code 
is freely available and accompanied by in-depth tutorials (https:// gitlab. com/ Grouu mf/ 
enhli nktoo ls).

Estimating accuracy and power analysis from simulated data

Inspired by the signal detected from snATAC-seq data for observed enhancer–promoter 
interactions (Fig. 1B), we designed a strategy to simulate enhancer–promoter co-acces-
sibilities with characteristics similar to those previously validated or well character-
ized. Briefly, we simulated a promoter accessibility vector by randomly shuffling one of 
the MYL2 or KCNH2 promoters observed within vCMs or aCMs and described above. 
We then simulated enhancer vectors by introducing random noise into the simulated 
promoter vector (Fig. 2A). To model noise in the simulated enhancers, we defined the 
probability of a cell having a read at the promoter and not at the enhancer following 
a Poisson distribution (λclose) or, conversely, at the enhancer and not at the promoter 
(λopen; see “Methods”). We estimated λclose and λopen from the observed, cell type-spe-
cific MYL2 and KCNH2 enhancers and found similar values for λclose (1.9 + / − 0.2) and 
λopen (0.08 + / − 0.3) (Fig.  2B). We extended this analysis using all the cells and found 
slightly higher λclose (2.0 + / − 0.2) and lower λopen (0.02 + / − 0.05) values. In addition, 
we also found that the values of λclose and λopen were overall robust to downsampling 
of cells and to read dropouts (Figure S5AB). Finally, λclose and λopen were stable to the 

https://go.dev/
https://go.dev/
https://gitlab.com/Grouumf/enhlinktools
https://gitlab.com/Grouumf/enhlinktools
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mixing of a rare or unknown cell type as contamination within a larger population, as 
would occur following imprecise clustering (Figure S5CD). We then estimated Enhlink 
precision, recall, and f1-score using the simulated enhancer–promoter associations as 
ground truth. Simulation across three datasets, for a large number of promoters, and 
with multiple λclose and λopen parameters (see “Methods”) highlighted that accuracy was 
mostly dependent on average promoter accessibility across cells and number of cells in 
the dataset (Fig. 2C and S6). Most importantly, it underscored the very high accuracy of 
Enhlink (f1-score > 0.8) when enough cells were used (> 5000) or when a promoter was 
widely accessible (average accessibility > 0.2; Fig. 2C).

Enhlink outperforms other methods on simulated datasets

We compared Enhlink performance with that of other popular co-accessibility 
approaches implemented in Cicero [9, 16], SnapATAC [16], Signac [14], ArchR [15], 
and Robustlink [17] (Fig. 3A). We also performed a contingency table analysis relating 

Fig. 2 Empirically parameterized simulation demonstrates Enhlink’s high accuracy. A Workflow to simulate 
promoter–enhancer associations parameterized by experimental data. The accessibilities of a promoter 
and its associated enhancers across cells are simulated from a single promoter–enhancer pair having 
a validated association. The simulated promoter accessibilities are derived by randomly shuffling the 
binary, scATAC-seq-derived accessibilities of the validated promoter across cells. Each simulated enhancer 
accessibility for a given cell is generated from the simulated promoter accessibility for that cell via a process 
that probabilistically flips the cell’s chromatin state: from closed to open (parameterized by λopen) or from 
open to closed (λclose). λopen and λclose are determined from the validated promoter–enhancer pair. The 
simulated enhancers are then integrated with the surrounding regions used as background. Bλopen and 
λclose distribution parameters inferred from chromatin accessibility of enhancer–promoter pairs previously 
validated in human scATAC-seq cardiomyocyte cells (Hocker et. al 2021). Pairs involve the promoter KCNH2 or 
MYL2 as determined in all cells or in the subset of aCM or vCM cells. C f1-score (y axis) of simulated promoter–
enhancer pairs as a function of average promoter accessibility and number of cells. Error bars summarize 20 
simulated promoters. Each simulated promoter has between two and seven associated simulated enhancers
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a promoter and enhancer (Chi2) and, optionally, corrected the resulting p-value for 
genome-wide multiple hypothesis testing using the method of Benjamini and Hochberg 
[25] (Chi2 + FDR). Rather than utilizing the R implementation of the linkage inference 
workflow from ArchR, Signac, and SnapATAC, which are embedded within larger pro-
cessing workflows, we opted to re-implement the algorithms in a Python framework (see 

Fig. 3 Enhlink outperforms other strategies for inferring linkage on simulated data. A Summary of existing 
enhancer–promoter method workflows. Some methods use scATAC-seq only as input (Cicero, Chi2 + FDR), 
others use scATAC-seq combined with scRNA-seq (Signac, SnapATAC, Robustlink). ArchR has a mechanism 
for both cases. B Enhlink outperforms ATAC-only methods on 400 simulated promoters and 1800 simulated 
enhancers generated from scATAC-seq data. The scores are computed from the average performance from 
each simulated promoter (see “Methods”). (OPT) refers to the selection of optimal hyperparameters for 
ArchR and (D) for the default values. C Enhlink outperforms other ATAC-only methods independently of the 
promoter accessibility. Accuracy is dependent on the promoter accessibility (x axis) with more accessible 
promoters leading to better f1-scores. D Enhlink outperforms ATAC + RNA methods on 897 simulated genes 
and 4090 simulated enhancers inferred from the multiome snRNA-/snATAC-seq data. Robustlink (OPT) is 
obtained with a resolution of 50.0 E Enhlink outperforms other ATAC + RNA methods across average gene 
expression values. Accuracy is dependent on the gene expression (x axis) with more expressed genes leading 
to better f1-scores (y axis)
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“Methods”). This decision significantly streamlined the process of inference across differ-
ent methods using the same datasets. Cicero and the Chi2 approaches are applicable to 
snATAC-seq data only, while Robustlink [17], SnapATAC [16], and Signac [14, 16] were 
applied to correlate enhancers with gene expression. ArchR was applied to both snA-
TAC-seq data only and to correlate genes (continuous values) with enhancers (binary). 
Also, rather than using the default ArchR hyperparameter values, we tested a grid of knn 
and n hyperparameter values (see “Methods”) to obtain the highest performance (Fig-
ure S7). Similarly, we also selected the optimal resolution for the Leiden algorithm lead-
ing to the highest performance for Robustlink (Figure S8). We simulated one dataset of 
promoter and associated enhancer accessibilities, using the framework described above, 
and a second dataset of gene expression and associated enhancer accessibilities, using a 
similar framework (see “Methods”). Both datasets were derived from cell type (i.e., aCM 
or vCM)-specific λclose and λopen parameters and, thus, effectively simulate cells of a sin-
gle cell type. We applied each method to the same set of query promoters and enhancers 
(see “Methods”). Enhlink outperformed other methods in terms of f1-score and preci-
sion computed for each gene/promoter (Fig. 3B-C), with Chi2 + FDR and Cicero (with 
a score cutoff of 0.2) matching Enhlink performance only for more accessible promoters 
(average accessibility > 0.025; Fig. 3D). In the experiment with simulated gene expression, 
Enhlink performance (f1-scores ~ 0.88) greatly exceeded those of Robustlink, Signac, and 
SnapATAC (f1-scores ~ 0.50) (Fig. 3E). We considered modifications to ArchR, including 
changing parameters for the embedding step and replacing its p-value calculation with 
the one used by Signac. The results showed that using fewer neighbors (see “Methods”) 
increased the accuracy of ArchR with simulated genes (Figure S7) and suggested that the 
first embedding step of ArchR was actually detrimental to its accuracy.

Enhlink enhancer–promoter associations are enriched for physical interactions

We next applied Enhlink to scATAC-seq and (promoter capture) PCHi-C data generated 
across two tissues—pancreatic islets and adipose—in our previous T2D study (Poirion 
et al., 2024). This study examined the effect of mouse genotype (i.e., strain), sex, and diet 
on the cellular heterogeneity of these metabolic tissues in mice fed an obesogenic or 
laboratory diet. In both tissues, accessibility profiles clearly separated major cell types 
(Fig.  4A and C), and we previously reported differences between genotypes and diets 
(Poirion et al., 2024). Here, we applied Enhlink, Chi2 + FDR, and Cicero independently 
to each tissue and cell type to identify OCRs co-accessible with promoters. PCHi-C was 
previously performed on these same tissues to identify physical enhancer–promoter 
interactions (see “Availability of data and materials”). In both tissues, we observed 
higher recalls, precisions, and f1-scores (see “Methods”) for Enhlink compared to Cic-
ero, and much higher numbers of links leading to higher recalls but lower precision for 
Chi2 + FDR compared to Enhlink (Fig. 4B and D). Here, we did not apply a cutoff to fil-
ter Cicero links, so as to obtain a number of links similar to that resulting from Enhlink. 
Further, we found that Enhlink-inferred links were more likely to be shared across 
sequencing batches (as measured by entropy computed across batches, see “Methods”) 
and hence less likely to be induced by technical artifacts, than were those inferred by 
Cicero or Chi2 + FDR (Fig. 4F). Indeed, the proportion of links with zero or close to zero 
entropy, indicating a batch-specific link and a possible batch effect, was lower among 
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those inferred from Enhlink relative to the other two methods (Figure S9). Finally, 
we found that Enhlink-inferred links present in the PCHi-C data had lower p-values 
(Mann–Whitney tests comparing the -log(p-value) distributions with a 0.05 threshold) 
than those that did not across all cell types (Fig. 4E). This suggests that Enhlink p-values 
are a good indicator of the biological meaningfulness of a given link. As such, we gener-
ated an atlas of enhancer–promoter co-accessibilities for both tissues and each cell type 
(Figure S10), indicating genotype, sex, and diet-specific effects and annotated these links 
with PCHi-C interactions (see “Availability of data and materials”).

To further investigate the enrichment results concerning reference linkages, we 
expanded our analysis by incorporating six reference datasets sourced from the 
EnhancerAtlas 2.0 database [26]. Specifically, we utilized Enhlink, Cicero, and the 
Chi2 + FDR procedure to infer linkages across the nine cell populations of the CARE 
dataset, which were previously employed for modeling the enhancers of KCNH2 (Fig. 1). 
Subsequently, we calculated an enrichment score (see “Methods”) based on the reference 
enhancers and links obtained from EnhancerAtlas for each cell population. Furthermore, 
we obtained reference datasets from EnhancerAtlas for the mouse islet and striatum and 
similarly computed enrichment scores for the relevant cell populations using different 
methods. Our analysis revealed that Enhlink consistently demonstrated superior enrich-
ments compared to Cicero and the Chi2 + FDR method (Figure S11), thus corroborating 
the findings observed with the reference PCHi-C datasets.

Fig. 4 Enhlink outperforms other approaches in retrieving PCHi-C links and mitigates batch effects. A UMAP 
embedding and cell types of the islet dataset. B Enlink, Cicero, and Chi2 performance of promoter-enhancer 
inference in islet snATAC-seq relative to islet PCHi-C. C UMAP embedding and cell types of the adipose 
dataset. D Enlink, Cicero, and Chi2 performance of promoter–enhancer inference in adipose snATAC-seq 
relative to adipose PCHi-C. E Comparison (Mann–Whitney test) of the Enhlink p-value distributions from links 
intersecting PCHi-C and those not intersecting (control). Levels used for Mann–Whitney p-values are **** for 
p-value < 1e-4, *** for p-value < 1e-3, ** for p-value < 1e-2, and * for p-value < 0.05. F Distribution of the batch 
x link entropy for Cicero, Chi2, and Enhlink from a subset of cells from the islet dataset. Low entropy close to 
zero indicates links that exist only in a few or a single batch while high entropy indicates links widespread 
among the batches
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Prioritizing neuronal enhancer–promoter links through multi‑omic integration

To characterize epigenomic regulation within another heterogeneous tissue, we gener-
ated a multi-omic snATAC-/snRNA-seq dataset from the striatum region of the brain. 
Striata were collected from eight genetically diverse inbred mouse strains, representing 
the founders of the Diversity Outbred (DO) and Collaborative Cross populations used 
for genetic analysis of complex traits [27]. Of particular interest in the striatum is a sub-
set of striatonigral and striatopallidal neurons that are defined by expressing either the 
dopamine receptor 1 (Drd1) or 2 (Drd2), respectively [28]. Clustering of gene expres-
sion identified eight major cell types and mixed populations of neurons, including the 
Drd1/Drd2 neurons and all other previously identified major cell types (Figure S12A).

We sought to prioritize links between enhancers and promoters/genes based on both 
chromatin accessibility and gene expression data. Focusing first on Drd1 neurons, we 
used Enhlink to identify 47,682 enhancer–promoter links within scATAC-seq data 
and 44,101 enhancer-gene links within scATAC-seq and scRNA-seq data. A subset of 
16,431 links were concordant (i.e., shared and in the same direction), and these had 
higher scores and lower p-values than those uniquely identified from co-accessibility 
alone (snATAC-seq only; Mann–Whitney p-value < 1e-64; Figure S12B-C). Similarly, 
enhancers within Drd2 neurons with concordant (n = 17,098) associations with a pro-
moter’s accessibility (n = 45,424) and its gene’s expression (n = 47,023) had higher scores 
and lower p-values than those supported by co-accessibility alone (Figure S12B-C). Col-
lectively, these results suggest that joint multi-omic analysis further refines enhancer 
identification.

We next used the expected association between a gene’s expression and its enhancers’ 
accessibility in the multi-omic data to evaluate computationally inferred co-accessibility 
between the gene’s promoter and those enhancers. For each marker gene of the Drd1 
or Drd2 neurons, we inferred enhancer links with the associated promoter. We then 
evaluated the links according to whether they exhibited the expected correlation with 
the gene’s expression, as assessed with logistic regression (see “Methods”). Both Cicero 
(without cutoff) and Enhlink identified enhancer associations for 162 of the 172 marker 
genes. However, Enhlink identified a more focused set of links (n = 802) relative to Cic-
ero (n = 6997), having significantly stronger associations with gene expression (Mann–
Whitney p-value < 0.05) (Figure S13). This suggests Enhlink associations are enriched for 
true positives. Increasing Cicero’s cutoff resulted in smaller sets of links having increased 
correlation with gene expression relative to results without a cutoff, yet still inferior or 
similar to correlation inferred by Enhlink (Mann–Whitney p-value < 0.05). Further, this 
came at the expense of fewer linked genes—92 for the often used [10, 21] cutoff of 0.2 
and 55 for the cutoff of 0.28 yielding the number of links (n = 700) most similar to those 
obtained with Enhlink. Overall, these results show the strength of Enhlink in identify-
ing putative enhancers more strongly associated with target gene expression relative to 
those identified by Cicero.

Validating neuronal enhancer–promoter links with eQTL

One method to validate putative enhancers is through direct genome editing to test the 
downstream effect on gene expression. As an alternative approach, genetic variation 
among individuals provides a natural source of variation within enhancer sequences. 
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The Diversity Outbred mouse population segregates greater than 50 million variants 
with extremely high precision for genetic mapping [27, 29, 30]. To explore the ability of 
Enhlink to identify biologically-relevant enhancers, we integrated previously collected 
(see “Methods”) expression quantitative trait loci (eQTL) data from bulk striatum RNA-
seq experiments with enhancer links identified here. Genes with local (or cis-) acting 
eQTL are abundant in the DO population. Further, these cis-eQTLs are likely driven by 
variants within an enhancer proximal to the regulated gene that impacts expression [10], 
which we hypothesize would alter cell-type specific OCRs identified through snATAC-
seq. Because the snATAC-seq data collected here represent replicates from the eight 
parental strains of the DO, we can further estimate OCR accessibility within each strain 
and see which accessibility patterns match the eQTL results. We identified 1731 and 429 
links from joint analysis of the snRNA- and snATAC-seq that were significantly (Enhlink 
p-value < 0.01) associated with Drd1 or Drd2 in both modalities, respectively (see “Meth-
ods”). To look for enhancers that drive differential expression between these two sub-
classes of neurons, we compared these links with the set of marker genes from Drd1/
Drd2 neuron gene expression clusters (see “Methods”). Doing so identified 159 links for 
66 genes for Drd1 neurons and 32 links for 17 genes for Drd2 neurons. Of the enhanc-
ers identified with Enhlink and associated with marker genes of Drd1 or Drd2 neurons, 
68 are linked to genes with cis-acting eQTL. We performed a SNP association analysis 
using a logarithm of the odds (LOD) regression approach to identify variants that show 
an association between the genotype at the OCR and gene expression (see “Methods”). 
Candidate enhancers driving variation in expression were identified as those with match-
ing correlations between their genotype at the variant, gene expression, and accessibility 
of the promoter and enhancers across inbred strains. Of the identified correlations, three 
enhancer–promoter links for marker genes Gulp1, Kcnb2, and Col25a1 (Fig. 5A-B) serve 
as proof of principle. In each case, the strains with the genotype identified as having the 
largest effect on the eQTL from bulk data (alternative genotype, Fig. 5C) presented dif-
ferential accessibility and expression in the single-nuclei data compared to the other 
strains (Fig. 5B). Together, these data show that Enhlink identifies biologically relevant 
enhancers that play an active role in cell-type- and strain-specific gene regulation.

Identifying distal Drd1‑specific enhancers

While the above analysis focused on identifying how local genetic variation impacts 
gene expression, Enhlink can also be used to identify cell type-specific distal enhancer 
networks. To do so, we extended our analysis by finding distal common enhancers for 
the top 10 Drd1-specific upregulated marker genes (Adarb2, Cntnap3, Lingo2, Drd1, 
Il1rapl2, Cntnap5c, Erbb4, Nrg3, Tac1, Ebf1) and top 10 Drd2 specific marker genes 
(Drd2, Nell1, Necab1, Unc5d, Grik3, Ptprm, Fam155a, Chrm3, Penk, Adk) across all 
(259,720) OCRs, rather than those within + / − 250  kb of their respective promoters. 
We identified 110 links from snATAC-seq data alone. To mitigate potential false posi-
tives over this genome-wide set of OCRs, we further applied Enhlink to the multi-omic 
snATAC-/snRNA-seq data as above and inferred 70 links. We prioritized the 33 links 
shared across both analyses for further analysis. Remarkably, 22 of these 33 links were 
associated with just four enhancers, all arising from a region 500 kb downstream of the 
Drd1 promoter and surrounded by the predicted pseudo-genes: Gm34439, Gm40954, 
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and Gm34557 (Fig. 5D and S14A). Further, all 10 of the Drd1-specific genes have at least 
a distal enhancer within the four Drd1 proximal enhancers (Fig. 5D and S14A). Addi-
tionally, 9 out of the remaining 11 links matched an intergenic OCR from the Islet-1 
(Isl1) gene that was previously characterized for regulating striatonigral and striatopalli-
dal genetic programs [31] (Fig. 5E and S14B). Notably, neurons from an Isl1 knockout 
mouse showed an increase in Drd2 expression and promoted striatopallidal (Drd2) neu-
ron differentiation while repressing striatopallidal (Drd1) genes. Together, these data 
show that Enhlink can identify coordinated chromatin regulation at distal loci with bio-
logically meaningful connections, perhaps indicating coordinated transcription factor 
activity [32]. All the linkages obtained from Striatum analysis are publicly available (see 
“Availability of data and materials”).

Discussion
In this study, we introduce Enhlink, a novel computational method that efficiently infers 
genomic linkages from single-cell datasets and is suitable for complex experimental 
designs. Enhlink infers enhancer–promoter co-accessibility from chromatin accessibil-
ity profiles in scATAC-seq data. It can also infer enhancer–promoter links supported by 
both their co-accessibility and concordant enhancer accessibility and target gene expres-
sion within multi-omic snATAC-/snRNA-seq datasets. More generally, Enhlink could be 
applied to other single-cell modalities containing sparse high-dimensional data, such as 

Fig. 5 Enhlink reveals chromatin regulation mechanisms of striatum Drd1/Drd2 neurons. A Chromatin 
accessibility (y axis) with Enhlink-inferred links between the promoters and enhancers for Kcnb2, Gulp1, 
and Col25a1, three marker genes of Drd1 neurons. B Chromatin accessibility and gene expression profiles 
per genotype for three enhancers (Kcnb2, Gulp1, and Col25a1). C eQTL logarithm of odds (LOD) scores for 
SNPs within the boundaries of the three enhancers across the eight DO genotypes. Stars indicate genotype 
harboring an alternative allele within an enhancer of Kcnb2, Gulp1, or Col25a1. Star subscript associates 
LOD scores in panel C with chromatin accessibility and gene expression in panel B. D Distal Enhlink analysis 
unveils multiple enhancers from the region 500 kb downstream of the Drd1 promoter and linked to the top 
10 marker genes of Drd1 neurons (yellow arrows). These genes are also linked to an intronic region of Isl1 
(blue arrows), a key gene regulating Drd1/Drd2 genetic programs
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single-cell DNA methylation [33], single-cell ChIP-seq [34], or multi-omic datasets com-
bining epigenome, methylome, and/or transcriptome [35].

Enhlink leverages an original procedure derived from random forests [36] to extend 
the capabilities of existing methods. First, Enhlink adjusts for technical covariates, 
such as sequencing library ID, to minimize batch effects at the level of individual cells. 
Methods that instead apply batch correction to aggregates of similar cells do not read-
ily accommodate technical effects within the aggregate. This would pose a problem in 
studies, such as our T2D study, where cells of similar genotype are partitioned across 
batches (see “Methods”). Second, Enhlink can infer enhancers linked to a promoter 
within specific contexts, such as sex, genotype, or disease, by including each as a biologi-
cal covariate. Third, for each enhancer–promoter link, Enhlink infers a p-value that is 
adjusted for multiple hypothesis testing relative to all and only those enhancers tested for 
association with that promoter. In this way, the strength (i.e., adjusted p-value) of each 
inferred association is scaled according to the genomic context of each promoter. Hence, 
two enhancers may have different inferred associations, even if their correlations with 
their respective promoters are similar, for example, if one enhancer has a much higher 
correlation with other enhancers it is compared against than the other enhancer. Fourth, 
Enhlink can infer linkages from distal regions beyond the neighboring OCRs. Finally, 
Enhlink can perform power analyses to estimate expected accuracies based on a simu-
lation workflow developed from experimentally validated enhancer–promoter linkages. 
This simulation framework can be applied independently of Enhlink and can aid others 
in diagnosing the impact of hyperparameter tuning, preprocessing steps, or other meth-
odological choices.

Enhlink employs several regularization mechanisms to reduce false positives. One 
hyperparameter, the maximum number of explanatory features of each tree, is biologi-
cally interpretable as the expected number of enhancers at each target region. While the 
actual number of enhancers is a property of the entire ensemble of trees, we expect that 
it is of the same order of magnitude as the number of features considered at each tree. As 
such, the hyperparameter can be set according to biological expectations or tractability 
of downstream experimental validation. Enhlink sensitivity and specificity can also be 
fine-tuned by adjusting the number of trees used and the minimum number of features 
required for each tree. Thus, weak but significant enhancer–promoter associations could 
be inferred by using a larger forest and feature size at the expense of increased computa-
tion. We implemented Enhlink in Go enabling it to be extensively distributed among a 
cluster of CPUs and providing superior resource management compared to many com-
putational single-cell tools written in R or Python. For example, for a large number of 
threads Enhlink became faster than our parallelized implementation of the Chi2 + FDR 
procedure, written in Python, indicating better overhead and CPU usage. This makes 
Enhlink well-suited for analyzing current [37] and future [23] large-scale multi-omic 
single-cell datasets.

Through extensive benchmarking of both simulated and real data, our study dem-
onstrates that Enhlink significantly outperforms other existing approaches in terms of 
accuracy while also limiting artifactual, batch-specific linkages. We took advantage of 
multi-omic data to show that enhancers identified from scATAC-seq were better cor-
related with gene expression when inferred with Enhlink than with the popular Cicero 
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framework. In addition, simulation and intersection with two reference PCHi-C data-
sets showed that Cicero was also outperformed by a Chi2 procedure followed by FDR 
correction. We also showed that aggregating cells into pseudo-bulk, a preprocessing 
step followed by ArchR and Robustlink and inspired by the Cicero workflow, was actu-
ally detrimental to accuracy. This occurs when the binning, aimed to group cells with 
similar characteristics, is too coarse and results in the grouping of heterogeneous cells. 
We evaluated Enhlink using three datasets, including two snATAC-seq datasets previ-
ously generated from mouse islet and adipose tissues and a novel multi-omic snATAC-/
snRNA-seq dataset from the mouse striatum. The single-cell islet and adipose studies 
aimed to characterize cellular heterogeneity in these tissues and uncover genes and reg-
ulatory elements perturbed by diet and genetic mechanisms. To aid this investigation, 
we developed cell type-specific enhancer–promoter atlases of the islet and adipose tis-
sues (see “Availability of data and materials”). These include genotype-, diet-, and sex-
specific linkages that are annotated according to whether the corresponding promoter 
and enhancer physically interact based on PCHi-C data generated from the same tis-
sues. Links supported by PCHi-C data, and those with concordant promoter chromatin 
accessibility and target gene expression in the striatum dataset, have significantly lower 
Enhlink p-values than their counterparts. This suggests that Enhlink p-values robustly 
reflect the biological meaningfulness of their associated links.

We generated the multi-omic mouse striatum dataset to investigate epigenomic 
regulations underlying the differentiation and gene regulation of striatonigral neurons 
expressing the dopamine receptor Drd1 and striatopallidal neurons expressing Drd2. 
Our goal was to identify strong candidate regulatory regions involved in these processes. 
To achieve this, we utilized Enhlink to identify concordant links between promoter 
accessibility and gene expression. We then examined the relationship between naturally 
occurring regulatory variation, chromatin accessibility, and gene expression among eight 
parental haplotypes with associated eQTL and SNP data. Through this analysis, we iden-
tified three enhancers associated with the expression of Gulp1, Col25a1, and Kcnb2. The 
contribution of the different haplotypes to the expression pattern indicated that the vari-
ants located within the Enhlink-identified enhancers were likely to be the causal factors 
for the observed changes in accessibility and expression. This finding strengthens the 
hypothesis that the regions identified by Enhlink play a crucial role as enhancers. Given 
that the majority of disease-associated variants within the human population occur 
within OCRs, this approach is extendable to prioritizing variants related to complex 
traits and might palliate some of the theoretical limits of eQTL analysis [38].

We further demonstrated the power of Enhlink to detect links between a target pro-
moter and its distal enhancers (> + / − 250  kb). We hypothesized that key enhancers 
should be detected as hubs correlating with the expression of multiple genes, similar to 
other studies modelling gene expression with SNPs [39, 40]. Strikingly, we found that 
most of the distal links inferred from the top marker genes of the striatonigral neu-
rons came from a region located 500 kb downstream of the Drd1 promoter. This region 
exhibits many characteristics of a super-enhancer region [2], as it contains a cluster of 
enhancers associated with several marker genes of the striatonigral neurons. Super-
enhancers have been shown to determine cell fate and to maintain cell identity [41], 
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stressing the possible role played by the downstream region of Drd1. Also, we found that 
all top ten markers of Drd1 neurons were linked with an intronic region of the Isl1 gene, 
a key gene in the striatopallidal/striatonigral differentiation [31]. While these results are 
novel, they need to be confirmed through further experimental validation.

While inferring Drd1 and Drd2 linkages we noticed that only ~ 35% of the links were 
shared between the ATAC and ATAC + RNA links. We attribute these disparities to two 
primary factors. Firstly, accessible promoters are not always expressed. Secondly, tran-
scription can occur in bursts [42] producing either persistent or short-lived [43] mRNA 
molecules, while the epigenomic profiles of promoters follow their own dynamic pat-
terns. Consequently, we believe that linkages derived from ATAC data alone hold greater 
relevance than those from ATAC + RNA data and should therefore be prioritized. Addi-
tionally, identifying concordant sets of links within a multi-omic dataset may enhance 
linkage specificity but could potentially reduce sensitivity.

Enhlink is a powerful and robust method for inferring genomic linkages from sparse, 
high-dimensional, single-cell omic, or multi-omic datasets. Enhlink outperforms other 
tested approaches, in part, by introducing cellular-level covariates that ameliorate tech-
nical effects and capture biological effects. Enhlink’s efficient implementation is tailored 
to large-scale single-cell analyses, including those aimed at deciphering complex regula-
tory networks.

Methods
Human heart snATAC‑seq dataset processing

We downloaded the Human Heart snATAC-seq dataset from the portal (http:// ns104 
190. ip- 147- 135- 44. us/ CARE_ portal/ ATAC_ data_ and_ downl oad. html) described in 
the publication [21]. From the portal, we downloaded the matrix file (all.npz), the cell 
index file (all.index), the OCR features index file (all.merged.ygi), the genome reference 
(Homo_sapiens.GRCh38.99.TSS.2 K.bed), the cluster file (all.cluster), and the all.group 
file with the library ID of each cell. The matrix from the all.npz file is a scipy sparse 
matrix with 79,515 cells and 287,415 OCRs with boolean values indicating if at least one 
read mapped to the cell is found within the boundaries of the corresponding OCR. From 
the genome reference and features index files, we defined the KCNH2 promoter regions 
by the following OCRs: "chr7:150,976,584–150977120", "chr7:150,978,193–150978805", 
and "chr7:150,978,915–150979661". The KCNH2 enhancer was defined as the follow-
ing genomic region: "chr7:150,955,147–150956502". We also defined the MYL2 pro-
moter regions by “chr12:110,920,282–110920944” and "chr12:110,921,386–110921633". 
We defined three enhancer regions of MYL2 by "chr12:110,931,149–110931877", 
"chr12:110,928,658–110929096", and "chr12:110,907,461–110909456". We then focused 
on the atrial (aCM) and ventricular (vCM) cardiomyocyte cell types, since KCNH2 is 
only expressed in these cell types, and defined a KCNH2 promoter boolean vector for 
either aCM or vCM by merging (using a logical or operand) the three promoter region 
vectors from the feature matrix using either the cell index of aCM or vCM. We followed 
the same strategy for the promoter of MYL2, but restricted to the vCM cell type since 
MYL2 is only expressed in vCM. We also downloaded the bigwig tracks from the same 
portal for the aCM and vCM cell types from the same portal. Finally, we computed the 

http://ns104190.ip-147-135-44.us/CARE_portal/ATAC_data_and_download.html
http://ns104190.ip-147-135-44.us/CARE_portal/ATAC_data_and_download.html
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Enhlink co-accessibilities for these two promoters and for aCM and vCM based on the 
workflow described below.

Co‑accessibility signals from KCNH2 and MYL2

We used the KCNH2 promoter vectors of aCM and vCM as ground truth labels (either 
accessible or not for a given cell) and the KCNH2 enhancer vectors as estimated labels 
to compute the precision, recall, and f1-scores. We then drew a random subset of 500 
enhancers among the 287,415 features of the feature matrix to compute the baseline 
distributions for the precision, recall, and f1-score. We then derived a p-value for the 
computed precision, recall, and f1-score with regard to the baseline distributions. We 
followed the same strategy for the MYL2 promoter and its associated enhancers.

Mouse islet and adipose scATAC‑seq

We used two scATAC-seq datasets from the mouse islet and adipose tissues whose gen-
eration and processing we previously described (Poirion et al., 2024). The islet dataset 
gathered 100,720 cells, 295,089 OCR features, 10 cell populations including alpha, beta, 
and delta cells, and was processed using 18 10X Genomics sequencing libraries. The adi-
pose dataset gathered 60,229 cells, 311,645 OCR features, 9 cell populations including 
adipocytes and macrophages, and was processed using 24 10X Genomics sequencing 
libraries. Cells from both datasets were labeled with their mouse strain/genotype ID 
(CAST, NZO, B6), diet (4% or 44% fat), and sex (M/F).

Mouse (RNA/ATAC) multi‑omic single‑cell collection

Mouse striatum was dissected from 12-week-old mice from eight inbred strains: A/J 
(The Jackson Laboratory Stock 000646), C57BL/6  J (000664), 129S1/SvImJ (002448), 
NOD/ShiLtJ (001976), NZO/H1LtJ (002105), CAST/EiJ (000928), PWK/PhJ (003715), 
and WSB/EiJ (001145). Striatum was collected from two males and two females for each 
strain. Striatum samples were flash-frozen in liquid nitrogen and stored at − 80 °C until 
processing. After collection, the striatum samples were processed in four batches of 
eight over 2 days. Each batch consisted of four male and four female samples, and each 
strain was represented in each batch.

Multi‑omic library generation

For single-nuclei preparation, frozen striatum was placed into 500  µl Miltenyi Nuclei 
Extraction Buffer (Miltenyi 130–128-024) plus 0.8 U/µl RiboLock RNase Inhibitor 
(ThermoFisher EO0382) in a gentleMACS C tube (Miltenyi 130–093-237) on ice, and 
then nuclei were immediately extracted in batches of four through the “4C_nuclei_1” 
program on the MACS Dissociator. Nuclei were placed on ice and filtered through a 
70-µm pluriStrainer Mini into a pre-chilled 2-ml tube, and the C tube was washed with 
an additional 500  µl cold Miltenyi Nuclei Extraction Buffer and filtered. Nuclei were 
spun down at 350 rcf at 4 °C for 5 min and resuspended in 80 µl cold PBS with 2% BSA 
and 1 U/µl RiboLock. Nuclei were counted (~ 4000 nuclei/µl) and 60,000 nuclei from 
each of the eight samples were mixed in a chilled 1.5-ml Eppendorf tube. The pooled 
nuclei were spun at 300 rcf at 4 °C for 3 min and resuspended in 30 µl 10 × Genomics 
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Nuclei Buffer with 1 U/µl RNase inhibitor. The pooled nuclei were counted once more to 
confirm counts (~ 10,000 nuclei/μl), single-cell suspension, and lack of debris.

Nuclei viability was assessed on a LUNA-FX7 automated cell counter (Logos Biosys-
tems), and up to 40,000 nuclei (~ 5,000 from each sample) were loaded onto each of 4 
lanes of a 10 × Chromium microfluidic chip. Single nuclei capture and library prepara-
tion were performed using the 10 × Chromium platform and according to the manufac-
turer’s protocol (#CG000388 Chromium Next GEM Single Cell Multiome ATAC + Gene 
Expression). Because the 10 × chip was superloaded, to reduce duplicate reads arising 
from multiple PCR steps, the number of cycles was adjusted from the 10 × protocol. 
After GEM generation, barcoded cDNA and transposed DNA fragments were pre-
amplified using 6 cycles. The pre-amplified sample was divided and used for two sepa-
rate steps. An additional 6 cycles were used for adding a sample index for ATAC library 
construction and 12 PCR cycles for the gene expression library construction. cDNA and 
ATAC libraries were checked for quality on Agilent 4200 Tapestation and ThermoFisher 
Qubit Fluorometer, and quantified by KAPA qPCR, before sequencing; each gene 
expression library was sequenced using NovaSeq 6000 S4 v1.5 200 cycle flow cell lane, 
dual index scRNAseq asymmetric read configuration 28–10-10–90, targeting 20,000 
nuclei with an average sequencing depth of 50,000 read pairs per nucleus. Each ATAC 
library was sequenced using Illumina NovaSeq 6000 S2 v1.5 100 cycle flow cell lane, with 
a 50–8-24–49 read configuration, also targeting 20,000 nuclei with an average sequenc-
ing depth of 50,000 reads per cell.

Multi‑omic library sequencing

Illumina base call files for all libraries were demultiplexed and converted to FASTQ files 
using bcl2fastq 2.20.0.422 (Illumina). A filtered joint digital gene expression and chro-
matin accessibility matrix was generated against the 10 × Genomics mm10-2020-A 
reference build (version 2020-A, Assembly: GRCm38, ENSEMBL release 98; Annota-
tions: Gencode vM23) using a modified 10 × Genomics CellRanger-ARC count pipeline 
(v2.0.0), which had the 20,000 cell limit of cell calling removed.

scRNA‑seq analysis for the striatum dataset

For each batch of the libraries, the output from Cell Ranger ARC consisted of both 
ATAC and gene expression BAM files. These two BAM files were used as inputs for 
Demuxlet [44] to determine the mouse strain identities of individual cells and to detect 
doublets. Only cells that were identified as singlets with consistent mouse strain identi-
ties in both assays were retained for further analysis.

To annotate and visualize the retained single cells, we performed downstream gene 
expression analysis on them using Seurat (version 4.0.3, [45]). For each batch, we 
removed low-quality cells and multiplets by filtering out cells with fewer than 200 
or more than 7500 detected genes and those with greater than 15% mitochondrial 
counts. We then used DoubletFinder [46] to further exclude any remaining doublets. 
Next, we merged the Seurat objects from the four batches and performed normaliza-
tion, highly variable feature identification, scaling, and linear dimensionality reduction 
using the NormalizeData(), FindVariableFeatures(), ScaleData(), and RunPCA() com-
mands, respectively, with default parameters. To remove batch effects, we integrated the 
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single-cell datasets from the four batches using Harmony [47]. Using the first 40 princi-
pal components determined manually by the Elbow plot, we conducted unsupervised 
cell clustering through the Louvain algorithm on the K-nearest neighbor (KNN) graph 
with resolution set to 0.2, which resulted in 22 cell clusters. We visualized the output in 
a 2D Uniform Manifold Approximation and Projection (UMAP) embedding using the 
same PCs used for cell clustering. We excluded four cell clusters that (1) co-expressed 
neuron markers Drd1/Drd2 and oligodendrocyte marker Aspa; (2) co-expressed neu-
ron markers Drd1/Drd2 and astrocyte marker Gja1; (3) co-expressed neuron markers 
Drd1/Drd2 and macrophage marker C1qa; or (4) highly expressed mitochondrial genes. 
We then re-processed and integrated the remaining cells using the same steps as before, 
yielding 18 cell clusters. We annotated these 18 cell clusters using marker genes identi-
fied through the FindAllMarkers() command through DropViz [48].

We processed the snATAC-seq data separately from the scRNA-seq data and fol-
lowed the same preprocessing procedure as the one described for the mouse islet and 
adipose snATAC-seq dataset (Poirion et al., 2023). Briefly, we aligned the reads to the 
mm10 genome with Cell Ranger V6 with default parameters. We inferred the peaks fus-
ing MAC2 [49].

Enhlink analytical workflow

The analytical procedure carried out by Enhlink involves multiple steps illustrated in 
Figure S2 and explained in greater detail in Additional File S1. It can be summarized as 
follows: (a) create a feature matrix (i.e., OCR × cell matrix) and a response vector (i.e., 
single-cell promoter accessibility or target gene expression) for each target genomic 
region, (b) model the response vector as a function of the feature matrix and identify the 
significant features associated with the target region, (c) optionally perform a secondary 
analysis to detect biological covariates associated with the linkage, and (d) in the case 
of multi-omics data, a linkage analysis is conducted for each omic and consensus links, 
found in all omics, are then inferred.

At a minimum, Enhlink requires a boolean sparse matrix, indicating the OCRs of each 
cell and a list of genomic regions, typically the promoters, defining the linkage targets. 
In addition, Enhlink optionally takes a sparse matrix containing the values of the target 
regions (such as a single-cell expression matrix in the case of multi-omics data), a file 
containing the covariates of each cell, and the cluster IDs of each cell. Enhlink constructs 
a feature matrix Mn for each target region by iterating through the OCRs surround-
ing it (+ / − 250  kb by default). If the feature matrix contains fewer than 100 features 
by default, Enhlink supplements it with random features derived from the existing fea-
tures. After constructing the feature matrix for each target region, Enhlink incorporates 
one-hot-encoded covariates and generates a response vector vg , representing either the 
boolean accessibility or the expression of the gene/target region g. If vg is continuous 
(e.g., representing gene expression), it is binarized using the mean of the non-null val-
ues as threshold. This would be the case when processing multi-omics data for which 
gene expressions from the RNA-seq are used to create the target regions. Then, Enhlink 
proceeds to model vg = f (Mn) for each cluster (or for all cells if no clusters are pro-
vided) and identifies features from Mn that significantly predict Vg. Enhlink employs 
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a strategy similar to that of a random forest classifier (Breiman, 2001), performing 100 
iterations by default. In each iteration, a random sample of cells and features is selected, 
and a decision tree [50] is used to recursively reduce the number of samples and features 
based on the top feature selected at each level of the tree. The top features are selected 
using a modified score derived from the Information Gain (IG) (see Additional File S1), 
which favors informative, positively correlated, and accessible features. For each feature, 
Enhlink calculates a p-value for its score to be different from 0 across iterations using 
Student’s t-test from the disturb library (https:// pkg. go. dev/ gonum. org/ v1/ gonum/ stat/ 
distuv) and corrects the feature p-values using the Benjamini–Hochberg false discovery 
rate (FDR) procedure.

Estimating the expected accuracy of inferred links through simulation

Enhlink provides an option to estimate the expected accuracy of the inferred links for 
a given target region by generating simulated enhancers and target regions. This sim-
ulation procedure aims to replicate the observed correlations between experimentally 
validated enhancers and promoters. More detailed information on this procedure can 
be found in Additional File S1. Briefly, Enhlink first simulates a promoter by shuffling 
a target region. Then, to simulate an associated enhancer, Enhlink duplicates the simu-
lated promoter and introduces two types of random noise. The noise is controlled by two 
hyperparameters, λopen and λclose, which model the scenario where the enhancer is not 
accessible in a given cell (λopen) or the target region is not accessible (λclose). The values of 
λopen and λclose are estimated from the heart snATAC data, using the experimentally vali-
dated enhancer of KCNH2 and enhancers from MYL2, as described below.

Inferring biological context‑specific enhancer–promoter interactions

Enhlink can optionally infer biological context-specific linkages with the details of the 
procedure found in Additional File S1 and summarized here. Each context is represented 
by a cell-level categorical covariate. Note that Enhlink one-hot encodes categorical vari-
ables into boolean features and cannot currently process continuous covariates. In this 
configuration, briefly, Enhlink first infers the set of enhancers and covariates linked to a 
target region g then, for each of these enhancers, e Enhlink computes Veg = Ve ◦ Vg as 
the Hadamard product between the target vector Vg and the enhancer vector Ve. Veg 
corresponds to a boolean vector indicating when both the enhancer e and the target 
region g are accessible within a cell. Veg is then used as a new target vector to find the 
covariates significantly associated with it.

Addressing class imbalance in datasets with unequal covariate distributions

Enhlink provides an option to mitigate class imbalance in datasets with varying covariate 
distributions, which is beneficial when one or more covariates are under- or over-repre-
sented. In such cases, the bootstrap samples may not adequately represent the covariate 
space. Enhlink addresses this issue by generating a more balanced distribution of covari-
ates through an incremental process. Specifically, Enhlink iteratively selects subsets of 
cells according to their covariates to obtain a near-uniform distribution of the covariates. 
While this strategy can be helpful in achieving a more uniform distribution of covariates, 

https://pkg.go.dev/gonum.org/v1/gonum/stat/distuv
https://pkg.go.dev/gonum.org/v1/gonum/stat/distuv
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it is important to note that it may produce biased results if one or more covariates are 
vastly underrepresented. Therefore, it is recommended to thoroughly assess the distri-
bution of covariates and to consider alternative approaches such as covariate removal 
if necessary to ensure more representative results. More details are given in Additional 
File S1.

Enhlink hyperparameters

The Enhlink inference workflow is governed by multiple hyperparameters summarized 
in Table S1. The main hyperparameters governing the regularization are max_features, 
which controls the maximum number of features that a tree can use, and depth which 
controls the maximum depth of each tree. Depth and max_features are intertwined since 
depth also indirectly controls the maximum number of features. However, max_features 
is a more intuitive hyperparameter to use than depth. The latter influences the speed of 
Enhlink and is set to 2 by default, but needs to be increased if max_features is set higher. 
secondOrderMaxFeat (set as 2 by default) is the equivalent of the max_features param-
eter for the inference of the biological context-specific enhancer–promoter interactions, 
triggered with the secondOrder hyperparameter. N_boot defines the number of trees to 
build and controls the false positive rate and influences the speed of Enhlink, similarly 
to min_matsize, controlling the minimum number of features of Mn. The hyperparam-
eters downsample (the size of the bootstrap) and maxFeatType (the number of features 
to include) can be used to increase the speed of the procedure but lower values might 
lead to lower accuracies. Finally, threshold defines the p-value cutoff and can be used to 
regulate the precision and the recall.

Enhlink software suite

Enhlink is an analytical framework developed in Go (https:// go. dev/) and compiled into 
three executables: enhlink, enhgrid, and enhtools. The command line manual and argu-
ments of each executable can be accessed using the -h flag, (e.g., enhlink -h). enhlink is 
the main executable that launches the Enhlink pipeline, while enhgrid allows launching 
Enhlink for a range of input values for all the hyperparameters accepting a numerical 
value. enhgrid is useful for, for example, automatizing a grid-search approach by trying 
a combination of multiple hyperparameters or for testing different noise levels. enhtools 
intersect results from multiple runs and output either the common or unique links of 
a particular run. It also computes the accuracy between two runs (f1-score, precision, 
recall). Finally, enhtools can filter links that are not within specific regions defined in an 
input BED file. This functionality can be used for example to filter links not inside topo-
logically associated domains (TAD). The Go source code, the manual, and the tutorial 
are available here: (https:// gitlab. com/ Grouu mf/ enhli nktoo ls).

Simulation studies of the performance impact of hyperparameters

We conducted a simulation study to estimate the impact of the different hyperparam-
eters using three scATAC-seq datasets: the mouse islet, the mouse adipose, and the 
snATAC-seq from the multi-omic striatum dataset mentioned earlier. We aimed to 
investigate the impact of various hyperparameters and experimental conditions, such 
as dataset origin and read depth, on Enhlink’s expected accuracy (see Fig.  2C). To 

https://go.dev/
https://gitlab.com/Grouumf/enhlinktools
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accomplish this, we first subset the datasets by selecting specific cell types, such as beta 
cells for the islet, adipocytes for the adipose, and Drd1 neurons for the striatum. We 
then utilized Enhlink’s simulation framework, described in Additional file S1, to estimate 
the expected accuracy of Enhlink analysis at a given promoter. We used a consistent grid 
of hyperparameters, as detailed in Table  S2, for each dataset and applied the enhgrid 
tool to perform Enhlink on the hyperparameter grid for all three datasets. Furthermore, 
we conducted the Enhlink analysis on a random subset of 40 genes from the features list 
of the three datasets for each combination of hyperparameters in the grid.

Estimating the hyperparameters importance from the simulation studies

From the hyperparameters simulation study described above, we estimated the most 
significant hyperparameters by fitting a Random Forest regressor from the scikit-learn 
library [51] using the f1-score as the dependent variable and Enhlink’s hyperparam-
eters as predictive variables (Figure S6). The simulation generated the true positive 
rate (TPR), false positive rate (FPR), and false negative rate (FNR) for each gene tested 
and for each hyperparameters combination. We then computed the f1-score as 
f 1score =

TPR
(TPR+0.5.(FPR+FNR)) and model it as a function of f 1score = f (hyperparameter) . 

We one-hot encoded all the hyperparameters and their values, removing the first value 
to avoid colinearity, and used them as binary variables. We also added the dataset ID as 
an additional variable. We then collected the feature importance of the model, computed 
as the Gini importance, an impurity-based measurement, using the feature_impor-
tances_ attribute of the scikit-learn class. For each simulated promoter, we also com-
puted the accessibility ratio as the ratio between the number of cells having the promoter 
accessible and the total number of cells. We then plotted the influence of the promoter 
accessibility ratio on the f1-score using the Python library seaborn.

Generating reference datasets for methods comparison

We generated two simulated datasets, using either snATAC-seq only from the mouse 
islet or the snATAC-seq + scRNA-seq from the striatum dataset, containing either sim-
ulated enhancer–promoter co-accessibilities (ATAC-seq only) or correlated enhancer-
gene links (ATAC + RNA). From the mouse islet dataset, we used the delta cell subset 
and a random set of 400 genes to simulate 400 promoters and 1800 enhancers. For each 
random promoter, we generated a random number of simulated enhancers (between 2 
and 7) with the noise parameters λclose = 1.25, λopen = 0.25. We created dummy genomic 
coordinates for these enhancers in order for them to be in the vicinity of their match-
ing promoter. These simulated enhancers/promoters were injected in a matrix of 10,100 
cells (the delta cells) and 295,089 peaks (the total number of peaks). From the striatum 
dataset, we used the Drd1 neuron cell types and a random set of 897 genes to simu-
late between 2 and 7 enhancers for each gene, for a total of 4090 enhancers. We used 
the same noise parameters: λclose = 1.25, λopen = 0.25, and binarized the randomized 
gene vectors using the mean of its non-null element before generating their associated 
enhancers (see above). The simulated enhancers were further injected into a matrix of 
10,000 cells and 259,720 peaks.
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Methods comparison procedure

We processed the ATAC simulated matrix with Enhlink, Chi2, Chi2 + FDR, Cic-
ero, and ArchR workflows and processed the ATAC + RNA simulated matrix with 
Enhlink, Signac, SnapATAC, and ArchR workflows. We used the same genomic 
window of + / − 250  kb around the promoter for all workflows. We then computed 
thePrecision = TP

TP + FP,Recall = TP
TP + FN , and the f 1score = 2 Precision . Recall

Precision + Recall for each of 
the simulated promoters/genes using the set of simulated enhancers as the true posi-
tives. We computed for each workflow and dataset the overall accuracy scores with their 
standard deviation (sd) using the mean and the sd of the three metrics. Finally, we also 
plotted the correlation between the accuracy scores and the mean of each simulated 
gene or promoter using the lmplot function of the Python seaborn library.

Alternative workflows implementation

Chi2

A straightforward approach for inferring the co-accessibility of a promoter region g 
with the set E of its surrounding enhancers is to perform a Chi2 test between g and e 
for each e ∈ E. Since vg and ve , i.e., the accessibility vector of g and e, were binary, we 
constructed a 2 × 2 contingency table for each (g, e), containing the occurrence for the 
following conditions: vg == 1 ∩ ve == 1, vg == 0 ∩ ve == 1, vg == 0 ∩ ve == 0, and 
vg == 1 ∩ ve == 0. We used the chi2_contingency function from the Python library 
Scipy [52] to infer the p-value.

Chi2 + FDR

A more refined approach to the Chi2 method described above is to correct for multi-
ple hypothesis testing by applying the false discovery rate procedure from Benjamini–
Hochberg [25] on the set of p-values obtained when applying the Chi2 on E. The method 
consisted in computing an expected p-value (fdr), assuming a false positive, based on 
the rank of the feature and the corrected p-value was equal to p-value x fdr. We used 
the fdrcorrection method from the Python Statsmodels library [52] to perform the FDR 
corrections.

Cicero

We downloaded the latest version of the Cicero algorithm [9] using the R library devel-
oped by the authors (https:// cole- trapn ell- lab. github. io/ cicero- relea se/ docs/). To 
parallelize the workflow and reduce the shared memory used, we processed each chro-
mosome independently. For each chromosome, we created a UMAP embedding with 
the following steps: (i) we performed a TF-IDF embedding using the TfidfTransformer 
class from Scikit-Learn. (ii) We used the singular value decomposition (SVD) using the 
TruncatedSVD class to embed the data into 25 components. (iii) We transformed the 
25 components with the Harmony algorithm correcting for the library ID. (iv) We used 
the UMAP class from the umap Python library with the “correlation” as a metric, 2.0 as 
repulsion_strength, and 0.01 as min_dist. Our Cicero workflow consisted of the following 
steps: (a) load the sparse matrix and creating a Cicero data object with make_atac_cds 
and binarize set as TRUE, (b) aggregate the raw count data with make_cicero_cds and 

https://cole-trapnell-lab.github.io/cicero-release/docs/
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k = 50, where cell similarity used to bin cells is determined in the harmony-transformed 
UMAP embedding, (c) estimate the distance parameter with estimate_distance_param-
eter using window = 250,000, maxit = 100, sample_num = 100, and distance_con-
straint = 25,000 and computed the mean of the distance parameters, (d) generate the 
Cicero models with generate_cicero_models using the mean distance parameter and win-
dow = 250,000, and (e) assemble the connections with assemble_connections and save all 
the Cicero connections.

Signac

The Signac methodology to identify enhancers significantly correlated with the expres-
sion of a given gene was described in the Method Peak-to-gene section of the published 
study [14]. The Signac methodology was described in four steps: (i) compute the Pear-
son correlation between the gene expression and the accessibility of each peak within 
500 kb. (ii) For each peak, compute a background distribution using 200 random peaks 
matching the GC content, the accessibility, and the sequence length of the peak, and 
identified with the MatchRegionStats R function (https:// github. com/ stuart- lab/ signac/ 
blob/ HEAD/R/ utili ties.R). (iii) Compute a z-test using the z-score obtained with the 
mean and variance of the background distribution. (iv) Retain links with p-value < 0.05 
and |PearsonScore|> 0.05. In order to process the same simulated matrix as the other 
methods, we reimplemented these four steps in a Python method: (a) We first used a 
250-kb window instead of 500 kb to be consistent with our chosen simulation setup and 
computed the Pearson correlation using the correlation function of the Python NumPy 
library. (b) In order to randomly select a set of enhancers Er with similar accessibility to 
a given enhancer eref and its accessibility aref , we then computed the probability P(e|eref) 
of each e ∈ E and their corresponding accessibility mean ae to be in Er using the normed 
kernel function and sigma = 50:

We randomly selected 200 enhancers using these probabilities and computed the 
Pearson score of each e ∈ Er . All the peaks used in the simulation had the same length. 
(c) We transformed the Pearson correlations (of enhancers in the random set Er or the 
query enhancer e with the target gene expression) into a p-value using the cumulative 
distribution function norm.cdf from the Scipy.stats package, and excluded links with 
|Pearson|< 0.05 or p-value > 0.05.

SnapATAC 

The SnapATAC methodology was described in the methods section of the SnapA-
TAC paper [16]. It consisted of considering the expression of a gene g as a variable in 
a univariate logistic regression model that predicted the binary accessibility status of 
each enhancer within a 1-Mb window flanking g. For each enhancer e from the set of 
the flanking enhancers E, the method built a univariate logistic model e = Logit(g) using 
the glm function with link = ’binomial’ from the R software and used a p-value cutoff 

P(e|eref) =
e−sigma.(ae−aref )

2

e′∈Ee
−sigma.(ae′−aref )

2

https://github.com/stuart-lab/signac/blob/HEAD/R/utilities.R
https://github.com/stuart-lab/signac/blob/HEAD/R/utilities.R
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of 5e-8. We reimplemented the workflow of SnapATAC in a Python function using the 
Logit class with its fit method from the statsmodels Python library [52]. In the original 
study, a label-transfer procedure was conducted in order to identify the matching cells 
between two separate snATAC-seq and scRNA-seq datasets. However, this procedure 
was not necessary in our case because we derived the simulated matrices from a multi-
omic snRNA-/snATAC-seq dataset for which we had a matching cell ID between the 
two modalities.

ArchR

The ArchR methodology to infer enhancer–promoter links from scATAC-seq and 
enhancer–gene correlations from single-cell multi-omic data was described in the sup-
plementary methods of the original study [15]. The method first created a low-overlap-
ping aggregate of cells which excludes any pair of cells within this aggregate that share 
more than 80% of accessible peaks. This was done by first computing a K-nearest neigh-
bor clustering (K = 100 with the Euclidean distance) for a subset of 500 random refer-
ence cells (NS) and using a 2D embedding of the cells as input. The method iteratively 
removed cells having > 80% of similarities with regard to the KNN neighbors and aggre-
gated the cell vectors of the remaining cells based on their KNN neighbors, with the val-
ues further scaled and log-transformed. The Pearson correlation was then computed 
between the target enhancer and promoter accessibilities, and a p-value was inferred by 
(a) transforming the correlation score into a t-statistic: tStat = |score|

√

1−max(score2, 1e
−17

(K−2) )

 and 

using the cumulative distribution function of the Student’s t law to convert tStat into a 
p-value. Finally, an FDR correction was applied using the Benjamini–Hochberg proce-
dure. The R source code of the peakaddCoaccessibility method is available here: https:// 
rdrr. io/ github/ Green leafL ab/ ArchR/ src/R/ Integ rativ eAnal ysis.R and the C +  + source 
code of the iterative aggregation strategy is available here: https:// github. com/ Green 
leafL ab/ ArchR/ blob/ master/ src/ KNN_ Utils. cpp. In order to process the same matrices 
in the same conditions as the other methods, we reimplemented the ArchR strategy in a 
Python script using the following modifications: (a) we used a Harmony + UMAP 
embedding instead of the iterative LSI strategy used in the original ArchR workflow. The 
embedding process was the same as described for Cicero. (b) We reimplemented the 
aggregate strategy from the R and the C +  + scripts and used the NearestNeighbors from 
the Scikit-Learn Python library class with the cosine distance to compute the K-neigh-
bors and iteratively computed the Jaccard similarity to exclude cells from the aggregates. 
We used the pairwise_distances function from Scikit-learn to compute the Pearson 
scores and the fdrcorrection function from the Statsmodels library to compute the FDR.

Robustlink

The Robustlink methodology was described in the original study [17]. It requires sin-
gle-cell RNA-seq data along with either single-cell ATAC-seq or single-cell methyla-
tion data. If the data are from the same sample but are not multi-omics, the first step 
is to identify similar cells with scFusion. Secondly, Robustlink infers meta-cell by first 
performing PCA dimension reduction followed by a KNN graph construction (K = 30) 
and then applies the Leiden algorithm to find cell communities. Each community 

https://rdrr.io/github/GreenleafLab/ArchR/src/R/IntegrativeAnalysis.R
https://rdrr.io/github/GreenleafLab/ArchR/src/R/IntegrativeAnalysis.R
https://github.com/GreenleafLab/ArchR/blob/master/src/KNN_Utils.cpp
https://github.com/GreenleafLab/ArchR/blob/master/src/KNN_Utils.cpp
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constitutes a meta-cell for which the pseudo-bulk of the cells within the community is 
used. The RNA-seq raw count of each community is normalized with log(CPM + 1) and 
the ATAC-seq raw count is normalized with log(TPM + 1). Then, the Robust link com-
putes the Spearman correlation between each relevant enhancer and gene and assesses 
their significance by constructing two null distributions, shuffling either metacells or 
shuffling regions. We installed Robustlink using the instructions from the Git package 
and applied Robustlink on our artificial ATAC + RNA dataset with the following pro-
tocol. After loading the single-cell RNA and ATAC cell × features matrices, we trans-
formed the RNA matrix on a new embedding with its 25 first components using the 
TruncatedSVD function from the Scikit-learn Python library. We didn’t have to use 
scFusion since our data were multi-omics. We then computed a KNN graph with K = 30 
and the Euclidean metric using the NearestNeighbors function from Scikit-Learn. We 
then partitioned the graph using the Leiden algorithm with the RBConfigurationVert-
exPartition as spartition type from the leidenalg Python package. We then create meta-
cells from the ATAC and RNA matrices by aggregating the cells within each community 
in pseudo-bulk and by normalizing the raw read count. Finally, we called the compute_
enh_gene_corrs and get_significance_stats from the robustlink Python package. WE used 
dist_th = 1e6, bins = 501 and 0.20 as fdr cutoff. Furthermore, we tested an array of reso-
lutions from 1.0 to 90.0. We also tested using all cells instead of inferring the meta-cells. 
In this case, each cell is a unique meta-cell. The robustlink workflow used is available as a 
Python script (see Software’s availability).

Intersecting the inferred links with the PCHi‑C data

The PCHi-C data are available on GEO (see “Availability of data and materials”) with a 
limited access using GSE214107 as accession ID. We downloaded the ibed files, which 
are similar to bedpe files with the six first columns referring to two genomic locations, 
for each strain, merged them, and retained only the unique links.

Estimating accuracy with the PCHi‑C data

We used the physical enhancer–promoter interactions from the PCHi-C datasets from 
the islet and adipose tissues as references to compute the overall accuracy scores (preci-
sion, recall, f1-score) of the links inferred with the Enlink, Cicero, and Chi2 + FDR work-
flows. For both the islet and adipose, we analyzed each cell population independently 
with each workflow. We then combined all the links obtained for a given dataset and 
workflow and estimated the overall precision, recall, and f1-score using the set of the 
PCHi-C links as true positives. We used the enhtools software with the intersect3 option 
from the Enhlink software suite (see above) to find the intersecting links between the 
reference set and the results of the different workflows.

Enrichment analysis with EnhancerAtlas datasets

We obtained six reference datasets from EnhancerAtlas 2.0 [26]. comprising reference 
enhancers for the human heart, human left ventricle, mouse striatum, and mouse islet, 
as well as reference enhancer–gene interactions for the human left ventricle and mouse 
striatum. Subsequently, we converted the genomic coordinates from mm9 to mm10 
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and from hg19 to hg38 using the LiftOver tool (https:// genome. ucsc. edu/ cgi- bin/ hgLif 
tOver) from the UCSC genome browser [53]. For each relevant cell type, we employed 
enhtools to tally the number of links inferred from that cell type by Enhlink, Cicero, or 
the Chi2 + FDR procedure, where the linked enhancer overlapped with at least one ref-
erence enhancer, or both the promoter and the linked enhancer overlapped with a ref-
erence enhancer-gene interaction. The enrichment score was then defined as the ratio 
between the number of intersecting links and the total number of links. We intersected 
the Heart dataset with the nine CARE cell populations, the left ventricle datasets with 
the vCM CARE population, the islet dataset with the ten islet cell populations, and the 
striatum datasets with the combined Drd1 + Drd2 populations.

Estimating batch effect with entropy measurements

We quantified the impact of technical batch effects by first reasoning that a true link 
should be distributed over sequencing batches (that are otherwise biologically similar). 
We used the information theory principle and computed the Shannon entropy of the link 
with regard to the sequencing library ID of the dataset. The library ID of the islet and 
adipose datasets were the ID of the 10 × Genomics sequencing runs and were regarded 
as variables associated with the batch effect. We first computed for each inferred link 
from an enhancer e to a gene g the link vector vl such as

We then computed the Shanon entropy of vl with regard to the set of library IDs B:

Here, vb corresponds to a binary vector indicating which cells belong to b. Finally, we 
plotted the batch effect entropy distribution using the seaborn Python library.

Inferring Enhlinks atlases for the islet and adipose tissues

For each tissue, we processed each cell type independently using the library ID, sex, diet, 
and genotype/strain as covariates. We used 0.01 as the p-value cutoff, with the secon-
dOrder and the uniformSampling options to infer the covariate-specific linkages from 
a uniform distribution of the covariates within each bootstrap sample. For each boot-
strap sample, we used a random subset of 66% of the features, a maximum of 4 explana-
tory features, a depth of 2, and a downsampling size of 15,000 cells. We created a binary 
cell × promoter sparse matrix by considering all the promoter regions of each gene and 
give the value 1 for a given cell if at least one read is found, 0 otherwise. This matrix is 
then used as Mtarget (see Additional file S1). We used the ATACMatUtils command with 
the -use_symbol option from the ATACdemultiplex package (https:// gitlab. com/ Grouu 
mf/ ATACd emult iplex) to create the matrix from the BED file containing the reads and 
barcode IDs. We then intersected the obtained linkage of each cell type with the PCHi-C 
links of either the adipose or the islet tissues using the enhtools software with the -inter-
sect3 option.

vl = v(e ∩ g) = ve ◦ vg

E(vl |B) = −
∑

b∈B

(
vl .vb

∑

i∈vl
i
).log(

∑

b∈B

(
vl .vb

∑

i∈vl
i
))

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://gitlab.com/Grouumf/ATACdemultiplex
https://gitlab.com/Grouumf/ATACdemultiplex
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Inferring Enhlinks for the striatum tissue

We restricted the Enhlink analysis to the two neuron cell types expressing either Drd1 or 
Drd2. We first performed two Enhlink analyses with the default parameters on the two 
neuron subtypes expressing either Drd1 or Drd2 using (a) the scATAC-seq matrix alone 
and (b) the scATAC-seq matrix for the enhancer features and the scRNA-seq matrix 
to infer enhancers linked to gene expression. We used the default parameters with the 
library ID as a covariate when using the scATAC-seq matrix only but extended the max_
features and depth parameters to 6 and 4, respectively. We then intersected the ATAC 
and ATAC + RNA linkages of the Drd1 and Drd2 cell type using the enhtools executable 
with the -intersect option. In a second analysis aimed at identifying Drd1- or Drd2-spe-
cific linkages, we processed with Enhlink all the cells from either the Drd1 or the Drd2 
neurons and used the library ID together with the cell type (Drd1 or Drd2) as covariates. 
We performed two processing steps using either the ATAC-seq data alone or the ATAC-
seq data combined with the RNA-seq data that we further intersected with enhtools. We 
also processed the same ATAC-seqs dataset with Cicero using the protocol described 
above.

Preparing eQTL collections

Bulk RNA-sequencing for eQTL analysis was accessed and downloaded from the 
Churchill Lab QTL viewer (https:// qtlvi ewer. jax. org/ viewer/ Chesl erStr iatum accessed 
02/17/2023). This dataset represents striatum samples collected from individual mice 
(n = 368) from the Diversity Outbred genetic reference population (The Jackson Labo-
ratory catalog #009376). The downloaded package includes a gene expression estimate 
matrix, genotype probabilities, kinship matrix, and metadata including sex. We per-
formed eQTL mapping restricted to the set of genes differentially expressed between 
Drd1 and Drd2 neurons (n = 96 and 103, respectively). eQTL mapping was performed 
using a linear mixed model to account for kinship on normalized, transformed gene-
level expression values using the “scan1” function in r/qtl2 [54], including sex as an addi-
tive covariate. Genes passing a filter requiring a local-eQTL with a LOD score greater 
than 8 (n = 162) were further included for SNP association using the “scan1snps” func-
tion in r/qtl2. All variants within a 1.5 LOD confidence interval were included for asso-
ciation analysis. Resulting variants with LOD score drop of 1.5 from the maximum were 
retained, along with their strain distribution pattern, to intersect with Enlink significant 
links and compare to haplotype effect pattern for the linked eQTL gene. The haplotype 
effects of the QTL for the candidate genes Kcnb2, Gulp1, and Col25a1 were estimated 
using “scan1blup” from r/qtl2.

Intersecting Enhlinks from the striatum with eQTL

We formatted the results of the eQTL analysis described above as a BED file listing 
the genomic coordinates of the SNPs and intersected these regions with the enhancers 
for the Drd1 and Drd2 neuron subtypes that were correlated to both promoter acces-
sibility and expression of their corresponding genes (see above). We then computed a 
p-value using the Mann–Whitney procedure to test if the overlapping enhancer pre-
sented differential accessibility between the genotypes. We used the p-values and the 
LOD score to identify the enhancers of Kcnb2, Gulp1, and Col25a1. For each enhancer 

https://qtlviewer.jax.org/viewer/CheslerStriatum
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and their associated promoter and gene, we computed the barplot of accessibility (for 
the enhancer and promoter) or gene expression, using the four 10 × Genomics libraries 
as individual measurements.

Evaluating Enhlink and Cicero with the striatum dataset

We intersected the linkages obtained from Cicero and Enlink for the Drd1/Drd2 neu-
ron cell types from the ATAC-seq data with the 96 and 103 marker genes of the Drd1 
and Drd2 neurons, respectively. For each gene and its inferred enhancer, we computed 
a univariate logistic regression: Ve = f(Vg), with Ve the boolean vector of the enhancer e 
and of size 1 × cell, indicating if e is accessible for each cell, and Vg the numerical vector 
indicating the scaled gene expression of g for each cell. We used the Logit class with its 
fit function from the Python statsmodels library to infer the p-value of each model. We 
then compared the -log10(p-value) distribution of the enhancer from Enhlink and from 
Cicero for different cutoffs: 0.0, 0.1, 0.2, and 0.28. We chose 0.28 as a cutoff to obtain 
a number of links (704) similar to the number obtained with Enhlink (802). We used 
the Mann–Whitney test to assess the difference of the p-value distributions between the 
links from Enhlink and with Cicero results. Since no difference was observed between 
Enhlink and Cicero with 0.28 as cutoff, we applied a t-test in this case, assuming normal-
ity of the distributions.
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