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ABSTRACT

Inhibiting protein kinases (PKs) that cause cancers
has been an important topic in cancer therapy for
years. So far, almost 8% of >530 PKs have been
targeted by FDA-approved medications, and around
150 protein kinase inhibitors (PKIs) have been tested
in clinical trials. We present an approach based on
natural language processing and machine learning
to investigate the relations between PKs and can-
cers, predicting PKs whose inhibition would be effi-
cacious to treat a certain cancer. Our approach rep-
resents PKs and cancers as semantically meaningful
100-dimensional vectors based on word and concept
neighborhoods in PubMed abstracts. We use infor-
mation about phase I-IV trials in ClinicalTrials.gov to
construct a training set for random forest classifica-
tion. Our results with historical data show that as-
sociations between PKs and specific cancers can be
predicted years in advance with good accuracy. Our
tool can be used to predict the relevance of inhibiting
PKs for specific cancers and to support the design
of well-focused clinical trials to discover novel PKIs
for cancer therapy.

INTRODUCTION

Protein phosphorylation is one of the most important post-
translational modifications. The human genome encodes
538 protein kinases (PKs), many of which are associated
with cancer initiation or progression. PKs transfer a � -
phosphate group from ATP to serine, threonine, or tyrosine
residues; the genome encodes roughly 200 phosphatases
that remove a phosphate group from a protein. Protein
phosphorylation and dephosphorylation are involved in
virtually every basic cellular process including proliferation,
cell cycle, apoptosis, motility, growth and differentiation.
Many PKs promote cell proliferation, survival, and migra-
tion, and misregulation of kinase activity is a common fea-
ture of oncogenesis (1–3). Molecularly targeted cancer ther-
apies are rapidly growing in importance for the treatment
of many types of cancer. Many targeted therapies, includ-
ing small-molecule kinase inhibitors and monoclonal an-
tibodies, act as PK inhibitors (PKIs). Since the introduc-
tion of the initial PKI in the 1980s, at least 37 PKIs have
received FDA approval for cancer therapy and over 150
kinase-targeted drugs are in clinical trials (3).

PKIs are not equally effective for all cancer types; instead,
specific characteristics of each tumor, including genetics, tu-
mor microenvironment, drug resistance, and pharmacoge-
nomics determine how useful a compound will be in the
treatment of a given cancer. Factors including whether a
particular kinase exhibits activating mutations in a given
cancer, or whether downstream targets of the kinase are
mutated strongly influence the susceptibility of a cancer to
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a given PKI. Characteristics of pathways related to those
mutated in a given cancer can also influence response to
targeted treatment (4). In addition, most PKIs target more
than one protein with a range from highly to poorly selec-
tive (5). It is, therefore, not always possible to reliably pre-
dict whether a given PKI will be efficacious against a given
type of cancer. For instance, imatinib, which targets BCR-
ABL, c-Abl, PDGFR and c-Kit, was found not be effective
in uveal melanoma despite high expression of KIT, an unex-
pected finding that was interpreted to be related to the lack
of ERK phosphorylation in these tumors (6).

In this work, we pose the question of whether one can
use knowledge latent in the published literature to predict
whether inhibition of a given PK is an effective treatment
of a cancer. Correct predictions could be used to priori-
tize clinical trials of a cancer with PKIs that target the PK
in question. In particular, our aim is to exploit the large
corpus of clinical text data available in PubMed abstracts
to discover novel associations between PKs and cancer,
leveraging natural language processing approaches based
on word embedding that have been successfully applied to
text analysis, representation, and classification tasks (7).
On historical data, we achieved an area under the receiver
operating characteristic (ROC) curve (AUROC) of up to
86.3% for predicting successful trials of all phases and up
to 96.3% for predicting successful phase IV trials. Predic-
tions based on PubMed data through 2020 revealed 2979
of 325 494 untested PK-cancer pairs (0.92%) had above-
threshold probabilities.

MATERIALS AND METHODS

Text normalization and preprocessing

We developed a software package called marea (marea
adamantly resists egregious acronyms) that implements all
necessary natural language processing (NLP) steps to pre-
pare the titles and abstracts of PubMed articles as input
for word embedding algorithms. marea filters PubMed ar-
ticles for relevance and applies PubTator Central (8) con-
cept recognition to the titles and abstracts of relevant arti-
cles. After concept replacement, the final phase eliminates
punctuation and stop words and reduces the vocabulary
size.

Filtering relevant PubMed articles. NCBI’s FTP site
makes available gzipped XML files containing titles, ab-
stracts, and metadata for all PubMed articles. marea down-
loads the annual baseline and daily update files, and parses
them to extract the fields of interest for each article:
PubMed ID, MeSH descriptors (if any), keywords (if any),
and year of publication. For entries that have multiple dates
with different years, the earliest one is recorded. To se-
lect articles for a particular search, the marea user pro-
vides a set of high-level MeSH descriptor ids. The MeSH
descriptors defining the scope of the research described
herein were D009369 (Neoplasms) and D011494 (Protein
Kinases). Any article marked with at least one of these de-
scriptors or any subcategory of these descriptors is consid-
ered relevant. An article is also judged relevant if it has
a keyword that matches a label or synonym of the search
descriptors or their subcategories. Some PubMed articles

have neither MeSH descriptors nor keywords; these can-
not match the search. Any article that lacks an abstract
is deemed irrelevant regardless of its MeSH descriptors or
keywords.

Concept replacement. The original word2vec method
(9,10) operates on individual words (tokens). However,
many medical concepts span multiple tokens. For instance,
non-small-cell lung carcinoma would be treated by word2vec
as three or five tokens (depending on how the hyphen is
handled in preprocessing), but it represents a single medical
concept. For this reason, recent approaches collapse mul-
tiword concepts into a single token prior to embedding by
replacing the multiword concepts with a single concept id
(11). For instance, non-small-cell lung carcinoma can be re-
placed by its MeSH id D002289.

PubTator Central from the National Center for Biotech-
nology Information (National Library of Medicine) offers
data for concept recognition in PubMed articles. Anno-
tated categories include chemicals, diseases, genes, cell lines,
SNPs and species, as well as other categories marea does
not track, such as DNAMutation and ProteinMutation.
Using PubTator Central character offsets, our software re-
places each phrase recognized in the title or abstract with
the identifier of the corresponding concept. Diseases and
chemical names are normalized to MeSH ids, genes and
proteins to NCBI Gene ids, cell lines to Cellosaurus (12),
SNPs to dbSNP RS ids and species to NCBI Taxonomy
ids. The one exception is the human species, NCBI taxon
9606, which we decided to skip. PubTator Central annota-
tions would have substituted 9606 for man, woman, boy, girl,
father, mother, patient and similar words. We chose to pre-
serve the distinctions of gender and age expressed in terms
for humans, as these factors are significant in the medical
context.

Text preprocessing. After concept replacement, marea
cleans up the text of PubMed titles and abstracts to make it
more suitable for word embedding. The tokenizer deletes all
punctuation symbols, including hyphens and underscores
within words: the parts of a compound word become sep-
arate tokens. marea removes stop words, whether lower-
case or capitalized. Uppercase acronyms of length ≥2, even
those that coincide with stop words, are not changed. For
example, the acronym ALL (acute lymphocytic leukemia)
is retained while all and All are eliminated. We started with
the stop word list for English in the Natural Language
Toolkit (nltk version 3.5) Python library (13) and added
some new stop words. Any letter of the alphabet that oc-
curs as a single-character token is a stop word. To fur-
ther reduce the size of the vocabulary, tokens that remain
after stop word removal are lemmatized with the Word-
Net (14) lemmatizer from nltk. The lemmatizer reduces
words to their base form, for example plural nouns are
simplified to the singular (unlike stemming, lemmatizing
a word always returns a complete word, not a truncated
word stem). The last step of text preprocessing converts
everything to lowercase, to avoid near-duplicate embed-
dings for upper-, lower- and mixed-case forms of the same
word.
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Word embedding

The word embedding method based on the word2vec al-
gorithm is performed on the preprocessed corpus to em-
bed words to vectors. We used the EMBeddInG GENerator
(embiggen), a Python 3 software library developed by our
group for word embedding based on word2vec and node
embedding based on the node2vec algorithm (15). In the
current project, the skip-gram model was used for word2vec
with the parameters window size = 5, minimum count (min-
imum word frequency) = 5, batch size = 128, negative sam-
ples = 20 and dimension = 100. Word embedding on the
total corpus resulted in embeddings of 293,274 words, each
with dimension 100.

PKIs and their PK targets

The online drug compendium DrugCentral (16) records ex-
perimental activities for approved drugs across all major
protein target families (including kinases). We extracted the
kinase activities from DrugCentral for PKIs. The result of
this operation is a list of PKI-PK pairs (PKI2PK), each of
which is mapped to an experimental value of affinity (e.g.
Ki, IC50, etc) in micromolar units and appropriately refer-
enced (when possible) with a PubMed ID (PMID). More-
over, we kept only the PKI2PK pairs having an activity
value below 0.03 �M, which is the threshold under which
drugs are more likely to act on kinases (17). The last filter
that we applied to extract PKI2PK pairs was the number of
PKs that are inhibited by a PKI to treat a cancer. For our
analysis, we chose PKIs that have an affinity value <0.03
�M and inhibit at most 5 PKs. If a PKI inhibited >5 PKs
at this threshold, we chose the top five PKs (n pk argument
in the Python code). Filtering the DrugCentral data by ap-
plying the affinity threshold 0.03 �M and a limit of 5 tar-
geted PKs resulted in a list of 226 pairs of PKs and PKIs
(Supplementary Material File S1).

For testing (both in the historical experiments and in the
de novo predictions), we excluded all PK/cancer pairs de-
rived from any PK–PKI association in the DrugCentral
data, regardless of affinity or n pk.

Cancers and subtypes

We derived a list of cancers from the Medical Subject Head-
ings (MeSH) thesaurus, yielding a list of 698 neoplasms and
their MeSH ids.

Phase I-Phase IV clinical trials of PKIs for cancer therapy

Clinical trials are typically performed in four standardized
phases. A phase I trial is designed to test the safety and
pharmacology of a drug. Phase II trials are therapeutic
exploratory trials that are conducted in a small number
of volunteers with the disease of interest, to answer ques-
tions required to prepare a phase III trial including opti-
mal doses, dose frequencies, administration routes, and end-
points. Phase III trials strive to demonstrate or confirm effi-
cacy, often by comparing the intervention of interest with ei-
ther a standard therapy or a placebo. Additionally, the inci-
dence of common adverse reactions is characterized. Phase
IV trials are performed subsequent to initial FDA approval

with the goal of identifying less common adverse reactions
and in some cases of evaluating a drug in populations dif-
ferent from the original study population (18).

We downloaded the Clinical Trials data from the Clini-
calTrials.gov server. Using the Clinical Trials data and the
above list of neoplasms, we created a list of neoplasms and
PKIs that were used to treat the cancers along with the clin-
ical trial phase, start date, completion date of the clinical
trials study, MeSH id for each neoplasm and NCT id for
each clinical trial study (Supplementary Material File S2).

Historical validation: training sets

In order to estimate the performance of our approach, we
trained our model on historical snapshots of PubMed and
tested the predictive accuracy with Clinical Trials data from
subsequent years. For each experiment, we fixed the target
year to a specific year and used PubMed abstracts published
up to and including this year for word embedding. We con-
structed the positive and negative training sets described be-
low but limited the Clinical Trials data to entries that were
initially registered not later than the target year.

To create the positive training set, we chose all pairs of
PKs and cancers where the PKIs were approved to treat the
cancers in the phase IV of the Clinical Trials data up to a
target year. To create the negative training set, we randomly
chose pairs of PKs and cancers where there was no evidence
of treating the cancers by inhibiting the PK in the Clinical
Trials data up to the target year. The negative training set
was chosen to be ten times the size of the positive training
set.

Historical validation: test sets

Independent test sets were chosen from Clinical Trials data
subsequent to the target year. The negative test set was cho-
sen to be 10 times larger than the positive test set. No PK-
cancer pair was common to both the negative training set
and negative test set. In some experiments, the positive test
set was defined on the basis of phase I, II, III, and IV stud-
ies, i.e. it contained pairs of PKs and cancers where the PKIs
were approved to treat the cancers in at least phase I of the
Clinical Trials data after the target year (denoted ‘all clini-
cal trial phases’ in Figures 3 and 4). In others, we attempted
to predict phase IV trials only (denoted ‘phase IV clinical
trials’ in Figure 5). In both cases, as well as in the ‘new’ pre-
dictions, we excluded PK/cancer pairs for which there was
any trial involving a specific cancer with a PKI that inhib-
ited the PK in the Clinical Trials data in any phase through
the end of the target year.

Note that for all predictions, only phase IV data were
used for training.

Random forest learning

The next step after generating positive/negative training/test
sets which contain lists of PK/cancer pairs is to find the em-
beddings of PKs and cancers and prepare the datasets for
the prediction task. For a given PK/cancer pair, we sub-
tracted the vector corresponding to the cancer from the vec-
tor corresponding to the PK. The difference vectors from
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the positive training and test sets were labeled with 1 and
the difference vectors from the negative training and tests
were labeled with 0.

Random forest learning was executed in Python 3.7,
using scikit-learn 0.24.1. A randomized search was per-
formed on different parameters including number of es-
timators, maximum features, maximum depth, minimum
samples split, minimum samples leaf and bootstrap us-
ing scikit-learn’s RandomizedSearchCV function. The best
model was selected for the prediction task.

Concept co-occurrence analysis

As a baseline against which to compare our approach, we
implemented a simple classification algorithm that searches
the same PubMed abstracts as used above and counts the
number of times a concept for a protein kinase is mentioned
in the same abstract as the concept for a cancer, classify-
ing the PK-cancer pair as positive if there are at least k co-
occurrences, and negative otherwise, for k = 1, 2, . . . , 25.

Performance assessment

The results of predictions are measured by the area under
the ROC curves (AUROC). AUROC is a measure of the
ability of the classifier to distinguish between the two classes
(PK-cancer pairs and non PK-cancer pairs). We addition-
ally assess performance by Precision-Recall (PR) curves,
which represent an alternative to ROC curves for tasks with
a large skew in the class distribution.

RESULTS

We developed a machine learning approach that leverages
knowledge latent in the published literature to predict pairs
of PKs and cancers (henceforth referred to as PK/cancer
pairs) that will be the subject of clinical trials registered in
the ClinicalTrials.gov resource. Our assumption is that a
correct prediction of a future clinical trial of any phase is
of interest because it indicates that current scientific knowl-
edge about a PK and a cancer was sufficiently convincing
to motivate the investment in a clinical trial. Correct pre-
diction of a future phase IV trial is an indication that inhi-
bition of a PK may be effective in the treatment of a given
cancer, because a phase IV trial would be initiated only after
a successful phase III trial.

Our pipeline assigns embeddings to words and concepts
in the original texts, extracts embeddings related to cancers
and PKs, and applies random forest classification to predict
pairs of cancer and PKs that correspond to clinical trials in
which a PKI that inhibits the PK is used to treat a given
form of cancer.

To this end, we selected PubMed articles from 1939 to
2020 (with a gap of 7 years from 1940 to 1946) according to
their MeSH descriptors for neoplasms and PKs, obtaining 2
779 507 relevant articles on the basis of 698 MeSH terms for
neoplasms and 218 MeSH terms for PKs. We first prepared
the abstract texts for word embedding by concept replace-
ment, stop word removal and lemmatization (Figure 1A).
The preprocessing step has several desirable effects. First, it
merges synonyms; for instance, ‘breast cancer’ and ‘Cancer

of Breast’ are both replaced by the corresponding concept
id, MESHD001943. Lemmatization replaces inflected word
forms with a common base form, for instance ‘higher’ is re-
placed by ‘high’ in the example of Figure 1A. Stop words,
i.e., common words such as ‘a’ and ‘and’, are removed be-
cause they do not carry much semantic information. All
punctuation marks such as ‘,’ and ‘.’ are removed and all
letters are converted to f (Lung) − f (Lung neoplasms) ≈
f (Breast) − f (Breast neoplasms) lowercase.

Following this, word embedding was performed with
a skip-gram model (Figure 1B). This step creates 100-
dimensional vector representations (embeddings) of the
words and concepts of the processed abstract texts. The
motivating idea of the word2vec algorithm is that because
words with similar meanings often appear together, the cor-
responding embeddings will be located close to each other
in the vector space (9). In addition, word vectors may re-
flect semantic relationships between words in ways that can
be expressed as analogies, e.g., France is to Paris as Ger-
many is to Berlin (10). In our data, embeddings for ovarian
neoplasms and lung neoplasms formed two distinct clusters
(Figure 1C). Additionally, we identified pairs of vectors that
demonstrated the semantic relation ‘organ-specific cancer
relates to organ’ (Figure 1D).

PKIs targeting PKs

The goal of our approach is to predict clinical studies re-
lated to therapeutically relevant PK-cancer pairs. To do so,
we curated information available in DrugCentral (19) and
identified 75 PKIs that have been used to treat cancers. In
many cases, the PKIs inhibit multiple PKs at a <0.3 �M
cutoff, and a total of 84 PKs are inhibited by these kinases.
The mean number of PKs inhibited by a given PKI was
2.8 (median 2, min. 1, max. 5), and the mean number of
PKIs that inhibit a given PK was 2.5 (median 2, min. 1,
max. 13) (Supplementary Material Figure S1A and S1B).
We retrieved clinical studies that involved these PKIs from
the ClinicalTrials.gov resource (20), identifying 2105 phase
I, 3185 phase II, 555 phase III, and 217 phase IV studies
performed between 1991 and 2021 (total 6062; Supplemen-
tary Material Figure S2A and S2B).

Random forest classification of PK-cancer pairs

We then used the word embeddings as the basis for machine
learning classification. We first extracted the 698 embed-
dings representing neoplasms and the 218 embeddings for
PKs. For the 75 PKIs that have been used to treat cancers,
we extracted information from DrugCentral regarding the
PKs that are inhibited by each PKI with the highest affini-
ties (see Materials and Methods for details). We then ex-
tracted data from ClinicalTrials.gov about clinical trials in
which the use of the PKI to treat a certain cancer was in-
vestigated. We interpret a phase IV (postmarketing) trial as
evidence that the PKI demonstrated efficacy in treating the
cancer. Figure 2B offers an example of how our procedure
would associate EGFR with three cancers against which the
PKI afatinib demonstrated efficacy.

It can be seen from Figure 1D that only some
pairs of tissues and cancers form valid analogies.
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Figure 1. Overview of concept embedding algorithms. (A) An example of preprocessing on a text. (B) Word2vec skip-gram learning. Words (potentially
replaced by concept IDs) are transformed from a one-hot representation into a low-dimensional vector through a one hidden-layer neural network trained
to predict context words. Backpropagation learning adjusts the weights of the hidden layer whose output can be interpreted as a low dimensional semantic
representation (word vector) of the one-hot encoded input word. The output layer contains probabilities of a word to occur at a neighboring position
to the target word. (C) Word vectors are represented in the space induced by the first three principal components. Vectors representing Lung Neoplasms
and descendent terms are shown in purple; vectors representing Ovarian Neoplasms and descendent terms are shown in green. (D) Positions of 8 vectors
in three-dimensional PCA space are shown. Arrows are used to connect pairs of vectors representing tissues and cancer that affects the tissue. It can be
seen that the pairs form analogies such that, for instance, f (Lung) − f (Lung neoplasms) ≈ f (Breast) − f (Breast neoplasms), where f(.) represents the
embedding of a word in the vector space. Panels (C and D) are meant to illustrate the difference between node classification (panel C) and construction of
difference vectors for classification (panel D) but were not used for the actual analysis reported here.
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Figure 2. Machine learning to predict PKs relevant for treating cancer. (A) Information about Phase I-IV trials of PKIs was retrieved from ClinicalTrials.gov
and DrugCentral. (B) A simplified example showing how the PK-cancer pairs were derived from ClinicalTrials.gov and DrugCentral. (C) The embedded
vectors derived from skip-gram analysis of PubMed abstracts were used to generate ‘analogy vectors’ by subtracting vectors of cancers from vectors of
PKs. Positives were defined by the Clinical Trials data, and negatives were chosen from the remaining vectors. (D) Random forest classification was applied
with analogy vectors as input.

For instance, f (Lung) − f (Lung neoplasms) ≈
f (Breast) − f (Breast neoplasms), while it is
not true that f (Lung) − f (Breast neoplasms) ≈
f (Breast) − f (Lung neoplasms). We reasoned that
vectors of the form f (PK) − f (Cancer ) could be used
for classification if the distribution of vectors derived from
PKs whose inhibition can be exploited to treat a given can-
cer differs from the general distribution of vectors derived
from arbitrary pairs of PKs and cancers. For instance, the
PKI sorafenib inhibits the kinases RAF, BRAF, FLT3,
VEGFR 1–3, PDGFR, c-KIT and RET and significantly
improves progression-free survival compared with placebo

in patients with progressive radioactive iodine-refractory
differentiated thyroid cancer (21). For the purposes of
our analysis, the positive set includes vectors formed by
subtracting the vector for Thyroid Neoplasms (MeSH
D013964) from those for the above-mentioned nine PKs.
We assume that the vast majority of relations between PKs
and cancers are not therapeutically relevant in this way,
although data to prove this negative role is not generally
available in the literature. On this assumption, vectors that
are not in our positive set are considered negative.

It is worth noting that several relations between words,
including analogy, are approximately preserved by simple
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linear combinations (e.g. subtraction) of the vectors repre-
senting the words in the embedding space (22). Here, for
each PK-cancer pair, we define a difference vector by sub-
tracting the cancer vector from the corresponding PK vec-
tor (Figure 2C). The sets of positive and negative vectors
defined in this way are used for random forest learning. The
features used by the random forest are provided by the val-
ues of each of the 100 dimensions of the embedded vectors
(Figure 2D).

As an example of our procedure, we describe the his-
torical validation pipeline for the target year of 2010 in
detail. About 2533 clinical trials were registered in Clini-
calTrials.gov between 1991 and 2010, resulting in 107 PK-
cancer pairs. The negative training set was constructed by
randomly choosing 1070 PK-cancer pairs not mentioned
in the ClinicalTrials.gov data in 2010 or before (see Mate-
rials and Methods for more details). Random forest clas-
sification was trained on the difference vectors obtained
by subtracting vectors corresponding to cancers from vec-
tors corresponding to PKs in the training set. The param-
eters of the random forest classifier are explained in Mate-
rials and Methods. In our first analysis on historical pre-
dictions, we evaluated the classification performance on a
test set of newly recorded clinical trials in ClinicalTrials.gov
for 2011 (1 year after 2010), 2011–2012 (2 years after 2010),
2011–2014 (4 years after 2010) and so on up to 2011–2020
(10 years after 2010). The number of positive test exam-
ples is shown in the figures, and ten times as many neg-
ative examples were chosen as described above. The AU-
ROC scores start from 77% in 2011, immediately one year
after 2010 and stay within the same range between 78%
and 82% over the following time periods, reaching the AU-
ROC score of 82% for 2011–2020; the average precision
ranged from 27% to 34% (Figure 3A). In our second anal-
ysis, we evaluated the classification performance on a test
set of newly recorded clinical trials in 2011–2012, 2013–
2014, and so on up to 2019–2020. The AUROC was 77%
for data in the first 2 years immediately following the tar-
get year, showed some fluctuations in the next 2-year in-
tervals, and reached around 86% in 2015–2016 and 2019–
2020. The AUROC ranged from 77% to 86%, and the av-
erage precision ranged from 28% to 41% (Figure 3B). We
performed an analogous analysis with a target year of 2014
(Figure 4).

We then attempted to predict the appearance of phase
IV clinical trial studies for PK-cancer pairs with an experi-
mental approach that was otherwise identical to the above.
There are many fewer positive test examples when limiting
the data to phase IV. For the 10-year period 2011–2020,
there were 295 positive test examples; the AUROC was 87%
and the average precision was 43% (Figure 5 and Supple-
mentary Figure S14). Results for other values of the PK-
per-PKI parameter are shown in Supplementary Figures
S3–S15.

In the manuscript, a PK-per-PKI threshold (Materials
and Methods) of 5 is shown. Supplementary Figures S3–
S15 show ROC and precision-recall curves for phase IV and
all phases for PK-per-PKI thresholds of 1, 2, 5, 10 for re-
sults not shown in the main manuscript, and Supplemen-
tary Tables S1–S6 present a summary of results from all ex-
periments. There was no value of the PK-per-PKI threshold

that maximized the AUROC or area under the PR curve for
all experiments.

In order to assess the additional value of our approach
above a simple co-occurrence analysis (Materials and Meth-
ods), we analyzed the performance of predicting valid
cancer-PK pairs based on a threshold number of abstracts
in which both concepts are mentioned, varying the thresh-
old from 1 to 25. The maximum F1 score was 0.242 for pre-
dicting all phases, and 0.087 for predicting phase IV studies
(Supplementary Tables S7 and S8).

Finally, we ran our method on the entire corpus of
PubMed abstracts up to November 2020. We considered
all clinical trials through 2020 and also clinical trials that
have been verified in 2021. We then constructed the positive
training set using all PK-cancer pairs from clinical trials of
phase IV. The negative training set contains randomly gen-
erated pairs of PKs and cancers where there was no evidence
in the clinical trials data of treating the cancer by inhibit-
ing the PK. Similar to the historical prediction analysis, we
chose the size of the negative training set to be 10 times the
size of the positive training set. The prediction set includes
all possible PK-cancer pairs except those where there was
evidence of inhibiting the PKs in any of phase I, II, III or
IV clinical trials that have been registered so far. The pre-
diction set also contains PK-cancer pairs for PKs that have
not been targeted yet. The size of the positive training set,
negative training set and prediction set are 557, 5570 and
325 494 examples, respectively.

In Supplementary Material File S3, we have provided
the predictions with prediction scores at least 0.491. This
value was chosen based on the threshold of the AUROC
scores which maximizes the geometric mean of the sensitiv-
ity (True Positive Rate, TPR) and specificity (1 – False Pos-
itive Rate, FPR), i.e., sqrt(TPR * (1-FPR)). 2979/325494
(0.92%) of the predictions were above this threshold. The
predictions include many that flag an additional indication
for inhibition of a kinase that is targeted by PKIs in ex-
isting trials. For instance, the second most highly ranked
prediction is for KDR and hepatocellular carcinoma. KDR
was shown to be a regulator of vascular endothelial growth
factor–induced tumor development and angiogenesis in
murine hepatocellular carcinoma cells (23). Similarly, the
twelfth prediction is for CSF1R and giant cell tumors. This
is of potential interest since tenosynovial giant cell tumors
(TGCTs) are characterized by rearrangements of CSF1,
which is a ligand for CSF1R (24). According to the predic-
tion at rank 37, the PK RYK, which according to our Drug
Central data has not been targeted yet, was found to be a
potential target in lung neoplasms.

DISCUSSION

De novo drug development typically costs several billion
U.S. dollars, takes 13–15 years, and suffers a high failure
rate (25–27). Phase I trials are typically performed after pre-
clinical studies have suggested the potential utility of an
investigational medication for a certain disease. However,
<10% of medications entering phase I clinical testing will
achieve FDA approval and reach the market (28,29). This
has motivated the development of computational methods
to reduce risk and increase efficiency of novel drug develop-
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Figure 3. ROC/PR analysis of predicted PK-cancer pairs (2010, all clinical trial phases). ROC and PR curves for predictions based on abstracts published
up to 2010. Test data are PK/Cancer pairs derived from clinical trials and DrugCentral PK/PKI information as described in Materials and Methods. (A)
Tests are arranged in 1-, 4-, 7-, and 10-year periods starting from 2011. (B) Tests are arranged in non-overlapping 2-year periods starting from 2011. See
Supplementary Table S2 for the threshold that achieves the optimal F1 score with the precision and recall values at that threshold. In both panels, the
number of PK-cancer pairs in positive test sets is shown with n.
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Figure 4. ROC/PR analysis of predicted PK-cancer pairs (2014, all clinical trial phases). ROC and PR curves for predictions based on abstracts published
up to 2014. Test data are PK/Cancer pairs derived from clinical trials and DrugCentral PK/PKI information as described in the methods. (A) Tests are
arranged in 1-, 3-, and 6-year periods starting from 2015. (B) Tests are arranged in non-overlapping 2-year periods starting from 2015. See Supplementary
Table S4 for the threshold that achieves the optimal F1 score with the precision and recall values at that threshold. In both panels, the number of PK-cancer
pairs in positive test sets is shown with n.
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Figure 5. ROC/PR analysis of predicted PK-cancer pairs (2010, phase IV clinical trials). ROC and PR curves for predictions based on abstracts published
up to 2010 with test data limited to phase IV trials. Groups and explanations are analogous to those in Figure 3.

ment. Myriad computer-aided drug discovery/design meth-
ods have been developed with a number of different ap-
proaches (30). High-throughput screening (HTS) is a brute
force method that investigates high numbers of molecules
to find those that elicit a desired response. Virtual screen-
ing is a strategy that prioritizes compounds computation-
ally so that HTS experiments can concentrate on subsets

of compounds most likely to have the desired activity. The
high degree of structural homology among protein kinases
makes poorly studied kinases interesting targets for homol-
ogy modeling and virtual screening (31). Numerous com-
putational approaches have been published (32), includ-
ing a Kinase Atlas to explore allosteric sites in kinases
(33).
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Drug repurposing aims to find novel targets and clinical
uses for already known drugs (34). A broad range of compu-
tational methods have been developed, many of which con-
struct networks (graphs) that comprise information about
features such as mechanism of action, chemical and physio-
logical processes, diseases, drugs, gene expression and oth-
ers (27,35–37). Drug repurposing is an attractive strategy
for PKIs, and a number of PKIs originally developed for
one indication have been successfully repurposed for others
(38). However, one major challenge is that although many
PKIs inhibit multiple kinases, the complete bioactivity ma-
trix (PKIs versus kinases) remains poorly characterized (5).
Computational approaches to repurposing PKIs for cancer
have leveraged gene expression profiles (39–41), systems bi-
ology (42), and deep learning (43).

In this work, we investigate whether the inhibition of a
specific protein kinase (rather than use of a specific pro-
tein kinase inhibitor) could be associated with a benefi-
cial response for a certain cancer. We do so by linking
PKIs to the protein kinases they inhibit and then linking
PKIs to specific cancers based on information in Clinical-
Trials.gov. Our work leverages word2vec (10) to generate
embeddings of concepts across a large subset of abstracts
in the PubMed resource as a foundation for machine learn-
ing. The key concept of word2vec goes back to the dic-
tum of John Firth from 1957: ‘You shall know a word by
the company it keeps’ (44), meaning that context words
that tend to appear near a target word in a text corpus en-
code information about the word’s meaning. The embed-
ding vectors can be regarded as a compact representation
of the meaning of the words in a vector space. Semanti-
cally related words tend to be close to each other in the
vector space. Additionally, the relative positions of pairs
of words reflects the relation between them (10). For in-
stance, if f is the mapping from a large text corpus to a
vector space, we often find the vectors encode similarities
that capture the gender relation, f (woman) − f (queen) ≈
f (man) − f (king), or the language-spoken-in relation,
f (Germany) − f (German) ≈ f (Italy) − f (Italian) (45).

The basic idea of our algorithm is that an embedding can
capture the relations between entities of two different sets,
but only some potential relations are true. For instance, the
relation country–capital city is a mapping from the set of
countries to the set of capital cities. The relations France–
Paris and Italy–Rome are true, but the relation France–
Rome is false.

In the biomedical sciences, there are myriad relations
where we know of a limited number of true relations but
are striving to identify the complete set of true relations. For
instance, inhibition of PK activity has proved to be an effec-
tive anti-cancer treatment, but it is not true that inhibiting
an arbitrary PK is an effective treatment for an arbitrary
cancer. Only a subset of all potential pairs of PKs and can-
cers are true in the sense that inhibiting the PK will effec-
tively treat the cancer. If we could accurately predict such
pairs, then one could focus efforts on clinical trials for PKIs
that inhibit the most relevant PK-cancer pairs.

Word embedding methods can represent an entire vocab-
ulary of words in a relatively low-dimensional vector space,
where semantic similarities between words are preserved in
the corresponding embedded linear space (10). The embed-

ded vectors generated by word2vec can be used as input for
classification algorithms (46–48). Vector cosine similarity in
an unsupervised word embedding enabled the prediction of
applications for materials years before their publication in
the materials science literature (49). Several supervised anal-
ogy learning methods based on word embeddings have been
successfully applied in a variety of natural language process-
ing tasks (22,50,51). Our algorithm uses this approach to
leverage information about cancer and kinases latent in the
published literature.

Our methodology could be extended to other biomedi-
cal research questions that can be framed as a search for
valid relations between concepts from two different sets.
The word2vec step could be replaced by more advanced
word embedding methods such as Bidirectional Encoder
Representations from Transformers (BERT) (52), including
the SciBERT version trained on the scientific literature (53).
The concept replacement step could be extended to encom-
pass additional terminologies or concept recognition algo-
rithms. To classify difference vectors, we could replace Ran-
dom Forest with many other classification algorithms.

Limitations

The algorithm presented here aims to identify PK/cancer
pairs with potential therapeutic relevance: inhibition of the
kinase can have beneficial effects in treating the cancer. We
are not attempting to predict the suitability of PKIs for indi-
vidual patients, which may be complicated by many factors
such as genetic variability and the acquisition of resistance
to a particular targeted treatment. This is beyond the scope
of our method.

All phase IV studies come after FDA approval, but not
all FDA-approved drugs undergo phase IV studies. Our
predictions may be conservative. ClinicalTrials.gov tracks
<50% of clinical studies worldwide, and thus our training
data is incomplete. We know of no standardized database
that has the current status of all PKIs with the results of clin-
ical trials for the cancers they have been used to treat. Clin-
ical trials may return negative results for many reasons, in-
cluding a high incidence of side effects, better performance
by a competing drug, or inability to recruit sufficient pa-
tients for the trial. Even if we had an accurate and com-
prehensive database of negative results for clinical trials, we
could not use this information to infer reliably that there is
no therapeutic relation between a protein kinase and a cer-
tain cancer type. Therefore, the negative examples used in
this work were chosen from the set of all possible combina-
tions of protein kinases and cancers, under the assumption
that the majority of these are not therapeutically valid.

CONCLUSION

This work presents a novel approach to predict new asso-
ciations between PKs and cancers, meaning that by target-
ing the PKs, the corresponding cancers could be treated.
We first used a word embedding algorithm to map words
of PubMed abstracts to vectors. We then applied a Ran-
dom Forest classifier to predict new PK/cancer pairs af-
ter training on the embedded vectors of known PK/cancer
pairs obtained from Clinical Trials and Drug Central data.
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We assessed our method with historical prediction and ob-
tained an average AUROC above 0.8. We deployed our
method on the entire corpus of PubMed abstracts and all
known PK/cancer pairs currently available, to predict novel
PK/cancer pairs. We found new associations between cer-
tain types of cancer and PKs that have not yet been targeted.

The main methodological innovation of our work is our
approach to the discovery of latent knowledge about the re-
lationship between concepts from two different categories.
Previous work has shown that concept embedding in ma-
terial science literature followed by machine learning clas-
sification can recommend materials for functional appli-
cations several years before their discovery (49). This ap-
proach represents binary classification of individual em-
bedded concept vectors. In contrast, our approach investi-
gates two classes of concepts (PKs and cancers); existing ev-
idence suggests that only a subset of PK/cancer pairs partic-
ipate in a ‘therapeutically relevant’ relation (c.f. Figure 2C),
whereby inhibition of a specific protein kinase contributes
to the treatment of a certain cancer. Our approach attempts
to identify such therapeutically relevant relations between
concepts prior to their publication in the medical literature.
There are numerous other areas in which interesting clas-
sification tasks involve the relationships between members
of different concept sets that would be amenable to our ap-
proach.

DATA AVAILABILITY

Several code repositories were developed for this project.
marea performs concept replacement and preprocessing of
PubMed abstracts and is available at https://github.com/
TheJacksonLaboratory/marea under the BSD 3 license. Yet
another clinical trials parser (YACTP) retrieves and pro-
cesses information from ClinicalTrials.gov and is avail-
able at https://github.com/monarch-initiative/yactp under
the GNU General Public License v3.0. Kinase Cancer Em-
bedding Tool (KCET) is available at https://github.com/
TheJacksonLaboratory/KCET and contains scripts and
Jupyter notebooks used to perform word embedding and
to leverage the embeddings for random forest classifica-
tion. The analysis described in this manuscript corresponds
to release v0.4.0. The embedding software, embiggen, per-
forms word embedding and is available at https://github.
com/monarch-initiative/embiggen as well as via PyPi at
https://pypi.org/project/embiggen/.

The repository https://zenodo.org/record/5516252 con-
tains the file that was output from YACTP, representing
ClinicalTrials.gov entries for the protein-kinases investi-
gated in this work, as well as files with embeddings and la-
bels from relevant PubMed abstracts up to 2010, 2014 and
2020. These files can be used to run scripts and notebooks
in the KCET repository.
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