Polarity of the mouse embryo is established at blastocyst and is not prepatterned.

Document Type


Publication Date



Body-Patterning, Cell-Lineage, Cell-Polarity, Chimera, Cleavage-Stage-Ovum, Comparative-Study, Crosses-Genetic, Fluorescent-Antibody-Technique, Mice, Microscopy-Confocal, Models-Biological, Video-Recording, Zona-Pellucida

JAX Source

Genes Dev 2005 May; 19(9):1081-92.


Polarity formation in mammalian preimplantation embryos has long been a subject of controversy. Mammalian embryos are highly regulative, which has led to the conclusion that polarity specification does not exist until the blastocyst stage; however, some recent reports have now suggested polarity predetermination in the egg. Our recent time-lapse recordings have demonstrated that the first cleavage plane is not predetermined in the mouse egg. Here we show that, in contrast to previous claims, two-cell blastomeres do not differ and their precise future contribution to the inner cell mass and/or the trophectoderm cannot be anticipated. Thus, all evidence so far strongly suggests the absence of predetermined axes in the mouse egg. We observe that the ellipsoidal zona pellucida exerts mechanical pressure and space constraints as the coalescing multiple cavities are restricted to one end of the long axis of the blastocyst. We propose that these mechanical cues, in conjunction with the epithelial seal in the outer cell layer, lead to specification of the embryonic-abembryonic axis, thus establishing first polarity in the mouse embryo.