A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway.

Document Type

Article

Publication Date

2006

Keywords

Carcinoma-Basal-Cell, Disease-Models-Animal, Female, Hedgehog-Proteins, Integrases, Male, Medulloblastoma, Mice-Transgenic, Neoplasms-Experimental, Rhabdomyosarcoma, Skin-Neoplasms

First Page

10171

Last Page

10178

JAX Source

Cancer Res 2006 Oct; 66(20):10171-8.

Abstract

We report a novel mouse model for the generation of sporadic tumors and show the efficiency of this approach by surveying Hedgehog (Hh)-related tumors. Up-regulation of the Hh pathway is achieved by conditionally regulated expression of an activated allele of Smoothened (R26-SmoM2) using either sporadic leakage or global postnatal induction of a ubiquitously expressed inducible Cre transgene (CAGGS-CreER). Following postnatal tamoxifen induction, CAGGS-CreER; R26-SmoM2 mice developed tumors with short latency and high penetrance. All mice exhibited rhabdomyosarcoma and basal cell carcinoma; 40% also developed medulloblastoma. In addition, mice showed a novel pancreatic lesion resembling low-grade mucinous cystic neoplasms in humans. In contrast, widespread activation of SmoM2 in the postnatal prostate epithelium results in no detectable morphologic outcome in 12-month-old mice. Comparison of gene expression profiles among diverse tumors identified several signature genes, including components of platelet-derived growth factor and insulin-like growth factor pathways, which may provide a common mechanistic link to the Hh-related malignancies. This experimental model provides a robust tool for exploring the process of Hh-dependent tumorigenesis and the treatment of such tumors. More generally, this approach provides a genetic platform for identifying tumorigenic potential in putative oncogenes and tumor suppressors and for more effective modeling of sporadic cancers in mice.

Share

COinS