Intracellular neutralization of viral infection in polarized epithelial cells by neonatal Fc receptor (FcRn)-mediated IgG transport.

Document Type


Publication Date



Animals, Animals, Newborn, Antibodies, Neutralizing, Dogs, Immunoglobulin G, Mice, Mice, Knockout, Orthomyxoviridae, Orthomyxoviridae Infections, Rats, Receptors, Fc

JAX Source

Proc Natl Acad Sci U S A 2011 Nov 8; 108(45):18406-11.




IgG was traditionally thought to neutralize virions by blocking their attachment to or penetration into mucosal epithelial cells, a common site of exposure to viruses. However, we describe an intracellular neutralizing action for an influenza hemagglutinin-specific monoclonal antibody, Y8-10C2 (Y8), which has neutralizing activity only at an acidic pH. When Y8 was applied to the basolateral surface of Madin-Darby canine kidney cells expressing the rat neonatal Fc receptor for IgG (FcRn), it significantly reduced viral replication following apical exposure of the cell monolayer to influenza virus. Virus neutralization by Y8 mAb was dependent on FcRn expression and its transport of IgG. As both FcRn and Y8 mAb bind their partners only at acidic pH, the Y8 mAb is proposed to carry out its antiviral activity intracellularly. Furthermore, the virus, Y8 mAb, and FcRn colocalized within endosomes, possibly inhibiting the fusion of viral envelopes with endosomal membranes during primary uncoating, and preventing the accumulation of the neutralized viral nucleoprotein antigen in the nucleus. Prophylactic administration of Y8 mAb before viral challenge in WT mice, but not FcRn-KO mice, conferred protection from lethality, prevented weight loss, resulted in a significant reduction in pulmonary virus titers, and largely reduced virus-induced lung pathology. Thus, this study reveals an intracellular mechanism for viral neutralization in polarized epithelial cells that is dependent on FcRn-mediated transport of neutralizing IgG.