Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rgamma(null) H2-Ab1 (tm1Gru) Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft-versus-host disease.

Document Type


Publication Date



CD4-Positive-T-Lymphocytes, Disease-Models-Animal, Genes-MHC-Class-II, Graft-vs-Host-Disease, HLA-DR4-Antigen, Humans, Leukocytes-Mononuclear, Mice-Inbred-NOD, Mice-SCID, Receptors-Interleukin-2, Transplantation-Heterologous

JAX Source

Clin Exp Immunol 2011 Nov; 166(2):269-80.


Graft-versus-host disease (GVHD) is a life-threatening complication of human allogeneic haematopoietic stem cell transplantation. Non-obese diabetic (NOD)-scid IL2rgamma(null) (NSG) mice injected with human peripheral blood mononuclear cells (PBMC) engraft at high levels and develop a robust xenogeneic (xeno)-GVHD, which reproduces many aspects of the clinical disease. Here we show that enriched and purified human CD4 T cells engraft readily in NSG mice and mediate xeno-GVHD, although with slower kinetics compared to injection of whole PBMC. Moreover, purified human CD4 T cells engraft but do not induce a GVHD in NSG mice that lack murine MHC class II (NSG-H2-Ab1(tm1Gru), NSG-Ab degrees ), demonstrating the importance of murine major histocompatibility complex (MHC) class II in the CD4-mediated xeno-response. Injection of purified human CD4 T cells from a DR4-negative donor into a newly developed NSG mouse strain that expresses human leucocyte antigen D-related 4 (HLA-DR4) but not murine class II (NSG-Ab degrees DR4) induces an allogeneic GVHD characterized by weight loss, fur loss, infiltration of human cells in skin, lung and liver and a high level of mortality. The ability of human CD4 T cells to mediate an allo-GVHD in NSG-Ab degrees DR4 mice suggests that this model will be useful to investigate acute allo-GVHD pathogenesis and to evaluate human specific therapies.