Abnormalities in the Structure and Function of Cerebellar Neurons and Neuroglia in the Lc/+ Chimeric Mouse Model of Variable Developmental Purkinje Cell Loss.

Document Type


Publication Date


JAX Location

Reprint Collection

JAX Source

Cerebellum 2017 Feb; 16(1):40-54






Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by impaired and disordered language, decreased social interactions, stereotyped and repetitive behaviors, and impaired fine and gross motor skills. It has been well established that cerebellar abnormalities are one of the most common structural changes seen in the brains of people diagnosed with autism. Common cerebellar pathology observed in autistic individuals includes variable loss of cerebellar Purkinje cells (PCs) and increased numbers of reactive neuroglia in the cerebellum and cortical brain regions. The Lc/+ mutant mouse loses 100 % of cerebellar PCs during the first few weeks of life and provided a valuable model to study the effects of developmental PC loss on underlying structural and functional changes in cerebellar neural circuits. Lurcher (Lc) chimeric mice were also generated to explore the link between variable cerebellar pathology and subsequent changes in the structure and function of cerebellar neurons and neuroglia. Chimeras with the most severe cerebellar pathology (as quantified by cerebellar PC counts) had the largest changes in cFos expression (an indirect reporter of neural activity) in cerebellar granule cells (GCs) and cerebellar nucleus (CN) neurons. In addition, Lc chimeras with the fewest PCs also had numerous reactive microglia and Bergmann glia located in the cerebellar cortex. Structural and functional abnormalities observed in the cerebella of Lc chimeras appeared to be along a continuum, with the degree of pathology related to the number of PCs in individual chimeras. Cerebellum 2017 Feb; 16(1):40-54.

Please contact the Joan Staats Library for information regarding this document.