A Prospective Cohort Multicenter Study of Molecular Epidemiology and Phylogenomics of Staphylococcus aureus Bacteremia in Nine Latin American Countries.

Document Type

Article

Publication Date

10-1-2017

JAX Source

Antimicrob Agents Chemother 2017; 61(10):e00816

Volume

61

Issue

10

ISSN

1098-6596

PMID

28760895

DOI

https://doi.org/10.1128/AAC.00816-17

Abstract

Staphylococcus aureus is an important pathogen causing a spectrum of diseases ranging from mild skin and soft tissue infections to life-threatening conditions. Bloodstream infections are particularly important, and the treatment approach is complicated by the presence of methicillin-resistant S. aureus (MRSA) isolates. The emergence of new genetic lineages of MRSA has occurred in Latin America (LA) with the rise and dissemination of the community-associated USA300 Latin American variant (USA300-LV). Here, we prospectively characterized bloodstream MRSA recovered from selected hospitals in 9 Latin American countries. All isolates were typed by pulsed-field gel electrophoresis (PFGE) and subjected to antibiotic susceptibility testing. Whole-genome sequencing was performed on 96 MRSA representatives. MRSA represented 45% of all (1,185 S. aureus) isolates. The majority of MRSA isolates belonged to clonal cluster (CC) 5. In Colombia and Ecuador, most isolates (≥72%) belonged to the USA300-LV lineage (CC8). Phylogenetic reconstructions indicated that MRSA isolates from participating hospitals belonged to three major clades. Clade A grouped isolates with sequence type 5 (ST5), ST105, and ST1011 (mostly staphylococcal chromosomal cassette mec [SCCmec] I and II). Clade B included ST8, ST88, ST97, and ST72 strains (SCCmec IV, subtypes a, b, and c/E), and clade C grouped mostly Argentinian MRSA belonging to ST30. In summary, CC5 MRSA was prevalent in bloodstream infections in LA with the exception of Colombia and Ecuador, where USA300-LV is now the dominant lineage. Clonal replacement appears to be a common phenomenon, and continuous surveillance is crucial to identify changes in the molecular epidemiology of MRSA. Antimicrob Agents Chemother 2017; 61(10:e00816-17.

Share

COinS