Document Type

Article

Publication Date

4-2017

JAX Source

Exp Hematol 2017 Apr; 48:41-49

Volume

48

First Page

41

Last Page

49

ISSN

1873-2399

PMID

28087429

Abstract

Xenograft models are transforming our understanding of the output capabilities of primitive human hematopoietic cells in vivo. However, many variables that affect posttransplantation reconstitution dynamics remain poorly understood. Here, we show that an equivalent level of human chimerism can be regenerated from human CD34(+) cord blood cells transplanted intravenously either with or without additional radiation-inactivated cells into 2- to 6-month-old NOD-Rag1(-/-)-IL2Rγc(-/-) (NRG) mice given a more radioprotective conditioning regimen than is possible in conventionally used, repair-deficient NOD-Prkdc(scid/scid)-IL2Rγc(-/-) (NSG) hosts. Comparison of sublethally irradiated and non-irradiated NRG mice and W(41)/W(41) derivatives showed superior chimerism in the W(41)-deficient recipients, with some differential effects on different lineage outputs. Consistently superior outputs were observed in female recipients regardless of their genotype, age, or pretransplantation conditioning, with greater differences apparent later after transplantation. These results define key parameters for optimizing the sensitivity and minimizing the intraexperimental variability of human hematopoietic xenografts generated in increasingly supportive immunodeficient host mice. Exp Hematol 2017 Apr; 48:41-49.

Share

COinS