Document Type

Article

Publication Date

11-4-2022

Publication Title

Microbiome

Keywords

JGM, Humans, Mice, Animals, Bifidobacterium, Nucleosides, Oxidative Phosphorylation, Obesity, Diet, High-Fat, Bifidobacterium longum, Adipose Tissue, White

JAX Source

Microbiome. 2022;10(1):188

Volume

10

Issue

1

First Page

188

Last Page

188

ISSN

2049-2618

PMID

36333752

DOI

https://doi.org/10.1186/s40168-022-01374-0

Abstract

BACKGROUND: Comparisons of the gut microbiome of lean and obese humans have revealed that obesity is associated with the gut microbiome plus changes in numerous environmental factors, including high-fat diet (HFD). Here, we report that two species of Bifidobacterium are crucial to controlling metabolic parameters in the Korean population.

RESULTS: Based on gut microbial analysis from 99 Korean individuals, we observed the abundance of Bifidobacterium longum and Bifidobacterium bifidum was markedly reduced in individuals with increased visceral adipose tissue (VAT), body mass index (BMI), blood triglyceride (TG), and fatty liver. Bacterial transcriptomic analysis revealed that carbohydrate/nucleoside metabolic processes of Bifidobacterium longum and Bifidobacterium bifidum were associated with protecting against diet-induced obesity. Oral treatment of specific commercial Bifidobacterium longum and Bifidobacterium bifidum enhanced bile acid signaling contributing to potentiate oxidative phosphorylation (OXPHOS) in adipose tissues, leading to reduction of body weight gain and improvement in hepatic steatosis and glucose homeostasis. Bifidobacterium longum or Bifidobacterium bifidum manipulated intestinal sterol biosynthetic processes to protect against diet-induced obesity in germ-free mice.

CONCLUSIONS: Our findings support the notion that treatment of carbohydrate/nucleoside metabolic processes-enriched Bifidobacterium longum and Bifidobacterium bifidum would be a novel therapeutic strategy for reprograming the host metabolic homeostasis to protect against metabolic syndromes, including diet-induced obesity. Video Abstract.

Comments

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Share

COinS