Faculty Research 1990 - 1999

Mouse mammary tumor virus (MMTV), a retrovirus that exploits the immune system. Genetics of susceptibility to MMTV infection.

Document Type

Article

Publication Date

1997

Keywords

Animal, B-Lymphocytes/immunology, Carbohydrate Sequence/genetics, Disease Susceptibility/*genetics, Mammary Tumor Viruses, Mouse, Mice, Mice, Inbred C57BL, Nucleotides/genetics, Retroviridae Infections/genetics/immunology, T-Lymphocytes/immunology, Tumor Virus Infections/genetics/immunology, Tumor Viruses, Murine/genetics/immunology, Virus Integration/genetics/immunology

First Page

34

Last Page

42

JAX Source

Medicina (B Aires) 1997;57 Suppl 2:34-42

Abstract

All animals, including humans, show differential susceptibility to infection with viruses. Study of the genetics of susceptibility or resistance to specific pathogens is most easily studied in inbred mice. We have been using mouse mammary tumor virus (MMTV), a retrovirus that causes mammary tumors in mice, to study virus/host interactions. These studies have focused on understanding the mechanisms that determine genetic susceptibility to MMTV-induced mammary tumors, the regulation of virus gene expression in vivo and how the virus is transmitted between different cell types. We have found that some endogenous MMTVs are only expressed in lymphoid tissue and that a single base pair change in the long terminal repeat of MMTV determines whether the virus is expressed in mammary gland. This expression in lymphoid cells is necessary for the infectious cycle of MMTV, and both T and B cells express and shed MMTV. Infected lymphocytes are required not only for the initial introduction of MMTV to the mammary gland, but also for virus spread at later times. Without this virus spread, mammary tumorigenesis is dramatically reduced. Mammary tumor incidence is also affected by the genetic background of the mouse and at least one gene that affects infection of both lymphocytes and mammary cells has not yet been identified. The results obtained from these studies will greatly increase our understanding of the genetic mechanisms that viruses use to infect their hosts and how genetic resistance to such viruses in the hosts occurs.

Please contact the Joan Staats Library for information regarding this document.

Share

COinS