Rhabdomyosarcomas in aging A/J mice.

Document Type

Article

Publication Date

2011

Keywords

Animals, Gene-Expression-Regulation-Neoplastic, Immunohistochemistry, Mice-Inbred-Strains, Neoplasm-Proteins, Oligonucleotide-Array-Sequence-Analysis, Rhabdomyosarcoma, Signal-Transduction

JAX Source

PLoS One 2011; 6(8):e23498.

Abstract

Rhabdomyosarcomas (RSCs) are skeletal muscle neoplasms found in humans and domestic mammals. The A/J inbred strain developed a high frequency (between 70-80%) of adult pleomorphic type (APT) RSC at >20 months of age while BALB/cByJ also develop RSC but less frequently. These neoplasms invaded skeletal muscle surrounding either the axial or proximal appendicular skeleton and were characterized by pleomorphic cells with abundant eosinophilic cytoplasm, multiple nuclei, and cross striations. The diagnosis was confirmed by detection of alpha-sarcomeric actin and myogenin in the neoplastic cells using immunocytochemistry. The A/J strain, but not the related BALB/c substrains, is also characterised by a progressive muscular dystrophy homologous to limb-girdle muscular dystrophy type 2B. The association between the development of RSC in similar muscle groups to those most severely affected by the progressive muscular dystrophy suggested that these neoplasms developed from abnormal regeneration of the skeletal muscle exacerbated by the dysferlin mutation. Transcriptome analyses of RSCs revealed marked downregulation of genes in muscular development and function signaling networks. Non-synonymous coding SNPs were found in Myl1, Abra, Sgca, Ttn, and Kcnj12 suggesting these may be important in the pathogenesis of RSC. These studies suggest that A strains of mice can be useful models for dissecting the molecular genetic basis for development, progression, and ultimately for testing novel anticancer therapeutic agents dealing with rhabdomyosarcoma.

Share

COinS