Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators.
Document Type
Article
Publication Date
6-18-2013
JAX Source
Mol Syst Biol 2013 Jun 18; 9:676
Volume
9
First Page
676
Last Page
676
ISSN
1744-4292
PMID
23774759
Abstract
The closely related transcription factors (TFs), estrogen receptors ERα and ERβ, regulate divergent gene expression programs and proliferative outcomes in breast cancer. Utilizing breast cancer cells with ERα, ERβ, or both receptors as a model system to define the basis for differing response specification by related TFs, we show that these TFs and their key coregulators, SRC3 and RIP140, generate overlapping as well as unique chromatin-binding and transcription-regulating modules. Cistrome and transcriptome analyses and the use of clustering algorithms delineated 11 clusters representing different chromatin-bound receptor and coregulator assemblies that could be functionally associated through enrichment analysis with distinct patterns of gene regulation and preferential coregulator usage, RIP140 with ERβ and SRC3 with ERα. The receptors modified each other's transcriptional effect, and ERβ countered the proliferative drive of ERα through several novel mechanisms associated with specific binding-site clusters. Our findings delineate distinct TF-coregulator assemblies that function as control nodes, specifying precise patterns of gene regulation, proliferation, and metabolism, as exemplified by two of the most important nuclear hormone receptors in human breast cancer. Mol Syst Biol 2013 Jun 18; 9:676
Recommended Citation
Madak-Erdogan Z,
Charn T,
Jiang Y,
Liu E,
Katzenellenbogen J,
Katzenellenbogen B.
Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators. Mol Syst Biol 2013 Jun 18; 9:676