Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli.
Document Type
Article
Publication Date
9-2014
JAX Source
Mol Microbiol 2014 Sep; 93(5):911-27.
Volume
93
Issue
5
First Page
911
Last Page
927
ISSN
1365-2958
PMID
24995530
Abstract
Laboratory-based evolution and whole-genome sequencing can link genotype and phenotype. We used evolution of acid resistance in exponential phase Escherichia coli to study resistance to a lethal stress. Iterative selection at pH 2.5 generated five populations that were resistant to low pH in early exponential phase. Genome sequencing revealed multiple mutations, but the only gene mutated in all strains was evgS, part of a two-component system that has already been implicated in acid resistance. All these mutations were in the cytoplasmic PAS domain of EvgS, and were shown to be solely responsible for the resistant phenotype, causing strong upregulation at neutral pH of genes normally induced by low pH. Resistance to pH 2.5 in these strains did not require the transporter GadC, or the sigma factor RpoS. We found that EvgS-dependent constitutive acid resistance to pH 2.5 was retained in the absence of the regulators GadE or YdeO, but was lost if the oxidoreductase YdeP was also absent. A deletion in the periplasmic domain of EvgS abolished the response to low pH, but not the activity of the constitutive mutants. On the basis of these results we propose a model for how EvgS may become activated by low pH. Mol Microbiol 2014 Sep; 93(5):911-27.
Recommended Citation
Johnson M,
Bell J,
Clarke K,
Chandler R,
Pathak P,
Xia Y,
Marshall R,
Weinstock GM,
Loman N,
Winn P,
Lund P.
Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli. Mol Microbiol 2014 Sep; 93(5):911-27.