Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.
Document Type
Article
Publication Date
10-23-2014
JAX Source
PLoS Genet 2014 Oct 23; 10(10:e1004705.
Volume
10
Issue
10
First Page
1004705
Last Page
1004705
ISSN
1553-7404
PMID
25340873
Abstract
The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP). A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1), while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1). The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation. PLoS Genet 2014 Oct 23; 10(10:e1004705.
Recommended Citation
DiTommaso T,
Jones L,
Cottle D,
Gerdin A,
Vancollie V,
Watt F,
Ramirez-Solis R,
Bradley A,
Steel K,
Sundberg JP,
White J,
Smyth I.
Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse. PLoS Genet 2014 Oct 23; 10(10:e1004705.