Targeting dendritic cells in humanized mice receiving adoptive T cells via monoclonal antibodies fused to Flu epitopes.

Document Type

Article

Publication Date

9-22-2016

JAX Source

Vaccine 2016 Sep 22; 34(41):4857-65

Volume

34

Issue

41

First Page

4857

Last Page

4865

ISSN

1873-2518

PMID

27595442

Abstract

The targeting of vaccine antigens to antigen presenting cells (APC), such as dendritic cells (DCs), is a promising strategy for boosting vaccine immunogenicity and, in turn, protective and/or therapeutic efficacy. However, in vivo systems are needed to evaluate the potential of this approach for testing human vaccines. To this end, we examined human CD8(+) T-cell expansion to novel DC-targeting vaccines in vitro and in vivo in humanized mice. Vaccines incorporating the influenza matrix protein-1 (FluM1) antigen fused to human specific antibodies targeting different DC receptors, including DEC-205, DCIR, Dectin-1, and CD40, elicited human CD8(+) T-cell responses, as defined by the magnitude of specific CD8(+) T-cells to the targeted antigen. In vitro we observed differences in response to the different vaccines, particularly between the weakly immunogenic DEC-205-targeted and more strongly immunogenic CD40-targeted vaccines, consistent with previous studies. However, in humanized mice adoptively transferred (AT) with mature human T cells (HM-T), vaccines that performed weakly in vitro (i.e., DEC-205, DCIR, and Dectin-1) gave stronger responses in vivo, some resembling those of the strongly immunogenic CD40-targeted vaccine. These results demonstrate the utility of the humanized mouse model as a platform for studies of human vaccines. Vaccine 2016 Sep 22; 34(41):4857-65.

Share

COinS