Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

Document Type

Article

Publication Date

12-2016

JAX Location

Reprint Collection

JAX Source

ILAR J 2016 Dec; 57(2):178-185

Volume

57

Issue

2

First Page

178

Last Page

185

ISSN

1930-6180

PMID

28053071

DOI

https://doi.org/10.1093/ilar/ilw021

Abstract

The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems, are synergistic and serve to make the mouse a better model for biomedical research, enhancing the potential for preclinical drug discovery and personalized medicine. ILAR J 2016 Dec; 57(2):178-185.

Please contact the Joan Staats Library for information regarding this document.

Share

COinS