Migratory CD11b+ conventional dendritic cells induce T follicular helper cell-dependent antibody responses.

Document Type

Article

Publication Date

12-1-2017

JAX Location

Reprint Collection

JAX Source

Sci Immunol 2017; 2:eaam9169

Volume

2

Issue

18

ISSN

2470-9468

PMID

29196450

DOI

https://doi.org/10.1126/sciimmunol.aam9169

Grant

AI110776

Abstract

T follicular helper (Tfh) cells are a subset of CD4+ T cells that promote antibody production during vaccination. Conventional dendritic cells (cDCs) efficiently prime Tfh cells; however, conclusions regarding which cDC instructs Tfh cell differentiation have differed between recent studies. We found that these discrepancies might exist because of the unusual sites used for immunization in murine models, which differentially bias which DC subsets access antigen. We used intranasal immunization as a physiologically relevant route of exposure that delivers antigen to all tissue DC subsets. Using a combination of mice in which the function of individual DC subsets is impaired and different antigen formulations, we determined that CD11b+ migratory type 2 cDCs (cDC2s) are necessary and sufficient for Tfh induction. DC-specific deletion of the guanine nucleotide exchange factor DOCK8 resulted in an isolated loss of CD11b+ cDC2, but not CD103+ cDC1, migration to lung-draining lymph nodes. Impaired cDC2 migration or development in DC-specific Dock8 or Irf4 knockout mice, respectively, led to reduced Tfh cell priming, whereas loss of CD103+ cDC1s in Batf3-/- mice did not. Loss of cDC2-dependent Tfh cell priming impaired antibody-mediated protection from live influenza virus challenge. We show that migratory cDC2s uniquely carry antigen into the subanatomic regions of the lymph node where Tfh cell priming occurs-the T-B border. This work identifies the DC subset responsible for Tfh cell-dependent antibody responses, particularly when antigen dose is limiting or is encountered at a mucosal site, which could ultimately inform the formulation and delivery of vaccines. Sci Immunol 2017; 2:eaam9169.

Please contact the Joan Staats Library for information regarding this document.

Share

COinS