Document Type
Article
Publication Date
2-2019
Keywords
JMG
JAX Source
Cancer Biol Ther 2019; 20(2):169-182
First Page
1
Last Page
14
ISSN
1555-8576
PMID
30183475
DOI
https://doi.org/10.1080/15384047.2018.1507666
Grant
CA174584-05, The Betterment Fund Scholarship Endowment of The Jackson Laboratory.
Abstract
Targeting the early steps of the glycolysis pathway in cancers is a well-established therapeutic strategy; however, the doses required to elicit a therapeutic effect on the cancer can be toxic to the patient. Consequently, numerous preclinical and clinical studies have combined glycolytic blockade with other therapies. However, most of these other therapies do not specifically target cancer cells, and thus adversely affect normal tissue. Here we first show that a diverse number of cancer models - spontaneous, patient-derived xenografted tumor samples, and xenografted human cancer cells - can be efficiently targeted by 2-deoxy-D-Glucose (2DG), a well-known glycolytic inhibitor. Next, we tested the cancer-cell specificity of a therapeutic compound using the MEC1 cell line, a chronic lymphocytic leukemia (CLL) cell line that expresses activation induced cytidine deaminase (AID). We show that MEC1 cells, are susceptible to 4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), a specific RAD51 inhibitor. We then combine 2DG and DIDS, each at a lower dose and demonstrate that this combination is more efficacious than fludarabine, the current standard- of- care treatment for CLL. This suggests that the therapeutic blockade of glycolysis together with the therapeutic inhibition of RAD51-dependent homologous recombination can be a potentially beneficial combination for targeting AID positive cancer cells with minimal adverse effects on normal tissue.
IMPLICATIONS: Combination therapy targeting glycolysis and specific RAD51 function shows increased efficacy as compared to standard of care treatments in leukemias.
Recommended Citation
Wilson J,
Chow K,
Labrie N,
Branca J,
Sproule TJ,
Perkins B,
Wolf E,
Costa M,
Stafford G,
Rosales C,
Mills K,
Roopenian DC,
Hasham MG.
Enhancing the efficacy of glycolytic blockade in cancer cells via RAD51 inhibition. Cancer Biol Ther 2019; 20(2):169-182
Comments
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License