Document Type
Article
Publication Date
3-27-2019
Keywords
JMG
JAX Source
PLoS Genet 2019 Mar 27; 1593):e1008075
Volume
15
Issue
3
First Page
1008075
Last Page
1008075
ISSN
1553-7404
PMID
30917130
DOI
https://doi.org/10.1371/journal.pgen.1008075
Abstract
Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.
Recommended Citation
Maggiolini F,
Cantsilieris S,
D'Addabbo P,
Manganelli M,
Coe B,
Dumont B,
Sanders A,
Pang A,
Vollger M,
Palumbo O,
Palumbo P,
Accadia M,
Carella M,
Eichler E,
Antonacci F.
Genomic inversions and GOLGA core duplicons underlie disease instability at the 15q25 locus. PLoS Genet 2019 Mar 27; 1593):e1008075
Comments
Open access under the terms of the Creative Commons Attribution License