Document Type

Article

Publication Date

8-7-2020

Keywords

JMG, JAXCC

JAX Source

Immunohorizons 2020 Aug 7; 4(8):485-497

Volume

4

Issue

8

First Page

485

Last Page

497

ISSN

2573-7732

PMID

32769180

DOI

https://doi.org/10.4049/immunohorizons.2000055

Grant

CA034196,OD27052,OD026440,AI132963,Director's Innovation Fund.

Abstract

The contribution of self-peptide-MHC signaling in CD4

Comments

The contribution of self-peptide-MHC signaling in CD4+ T cells to metabolic programming has not been definitively established. In this study, we employed LLO118 and LLO56, two TCRtg CD4+ T cells that recognize the same Listeria epitope. We previously have shown that LLO56 T cells are highly self-reactive and respond poorly in a primary infection, whereas LLO118 cells, which are less self-reactive, respond well during primary infection. We performed metabolic profiling and found that naive LLO118 had a dramatically higher basal respiration rate, a higher maximal respiration rate, and a higher glycolytic rate relative to LLO56. The LLO118 cells also exhibited a greater uptake of 2-NBD-glucose, in vitro and in vivo. We extended the correlation of low self-reactivity (CD5lo) with high basal metabolism using two other CD4+ TCRtg cells with known differences in self-reactivity, AND and Marilyn. We hypothesized that the decreased metabolism resulting from a strong interaction with self was mediated through TCR signaling. We then used an inducible knock-in mouse expressing the Scn5a voltage-gated sodium channel. This channel, when expressed in peripheral T cells, enhanced basal TCR-mediated signaling, resulting in decreased respiration and glycolysis, supporting our hypothesis. Genes and metabolites analysis of LLO118 and LLO56 T cells revealed significant differences in their metabolic pathways, including the glycerol phosphate shuttle. Inhibition of this pathway reverts the metabolic state of the LLO118 cells to be more LLO56 like. Overall, these studies highlight the critical relationship between peripheral TCR-self-pMHC interaction, metabolism, and the immune response to infection.

Share

COinS