The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma.

Document Type

Article

Publication Date

1-2020

Keywords

JGM

JAX Source

Leukemia 2020 Jan; 34(1):167-179.

Volume

34

Issue

1

First Page

167

Last Page

179

ISSN

1476-5551

PMID

31182781

DOI

https://doi.org/10.1038/s41375-019-0498-5

Abstract

Over the last few years, a detailed map of genetic and epigenetic lesions that underlie multiple myeloma (MM) has been created. Regulation of microRNA (miR)-dependent gene expression and mRNA splicing play significant roles in MM pathogenesis; however, to date an interplay between these processes is not yet delineated. Here we investigated miR-mediated regulation of splicing networks at the transcriptome level. Our studies show that a significant number (78%) of miRs which are either up- or down-regulated in patient CD138+ MM cells, but not in healthy donors (HD) CD138+ plasma cells (PC), target genes involved in early stages of pre-mRNA splicing. We also identified deregulated miRs that target core splicing factors (SF) and modifiers (SM, enhancers/silencers) which cause altered splicing in MM. Our studies suggest that Let-7f, in combination other miRs which are frequently and significantly deregulated in patients with overt MM, targets genes that regulate intron excision. Importantly, deregulated expression of certain miRs in MM promote increased intron retention, a novel characteristic of the MM genome, by inducing deregulated expression of the genes that regulate the splicing network. Our studies, therefore, provide the rationale for therapeutically targeting deregulated miRs to reverse aberrant splicing and improve patient outcome in MM.

Share

COinS