Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss.
Document Type
Article
Publication Date
4-10-2020
Keywords
JMG
JAX Source
Cells 2020 Apr 20; 9(4):E931
Volume
9
Issue
4
ISSN
2073-4409
PMID
32290105
DOI
https://doi.org/10.3390/cells9040931
Grant
EY011996,EY027860,EY027305,EY028561, EY019943,EY027894
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Recommended Citation
Collin GB,
Gogna N,
Chang B,
Damkham N,
Pinkney J,
Hyde L,
Stone L,
Nishina PM,
Krebs MP,
Naggert JK.
Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020 Apr 20; 9(4):E931
Comments
The authors thank James Kadin and Grace Stafford for help with scripts to filter PubMed data, Cynthia Smith for her contributions to Table S1 and for coordinating our efforts with those at MGI, Melissa Berry for assistance with nomenclature, Bernard Fitzmaurice and Wanda Hicks for fundus and/or OCT imaging, and Jane Cha for drawing Figure 1.