Document Type

Article

Publication Date

3-15-2022

Publication Title

Skelet Muscle

Keywords

JGM, Amino Acid Sequence, Animals, Bone Morphogenetic Proteins, Female, Germ Cells, Growth Differentiation Factors, Male, Mice, Muscle, Skeletal, Myostatin, Signal Transduction

JAX Source

Skelet Muscle 2022 Mar 15; 12(1):7

Volume

12

Issue

1

First Page

7

Last Page

7

ISSN

2044-5040

PMID

35287700

DOI

https://doi.org/10.1186/s13395-022-00290-z

Grant

AR060636, AG052962

Abstract

BACKGROUND: Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression.

METHODS: We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11.

RESULTS: In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected.

CONCLUSIONS: GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.

Comments

We thank Ann Lawler and Charles Hawkins at the Johns Hopkins Transgenic Core Laboratory for ES cell transfections and blastocyst injections and The Jackson Laboratory Clinical Chemistry Services for measurements of plasma leptin, insulin, and lipid levels.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS