An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity.
Document Type
Article
Publication Date
1-5-2022
Publication Title
Neuron
Keywords
JGM
JAX Source
Neuron 2022 Jan 5; 110:1-16
ISSN
1097-4199
PMID
34727520
DOI
https://doi.org/10.1016/j.neuron.2021.10.014
Abstract
Proper assembly and function of the nervous system requires the generation of a uniquely diverse population of neurons expressing a cell-type-specific combination of effector genes that collectively define neuronal morphology, connectivity, and function. How countless partially overlapping but cell-type-specific patterns of gene expression are controlled at the genomic level remains poorly understood. Here we show that neuronal genes are associated with highly complex gene regulatory systems composed of independent cell-type- and cell-stage-specific regulatory elements that reside in expanded non-coding genomic domains. Mapping enhancer-promoter interactions revealed that motor neuron enhancers are broadly distributed across the large chromatin domains. This distributed regulatory architecture is not a unique property of motor neurons but is employed throughout the nervous system. The number of regulatory elements increased dramatically during the transition from invertebrates to vertebrates, suggesting that acquisition of new enhancers might be a fundamental process underlying the evolutionary increase in cellular complexity.
Recommended Citation
Closser M,
Guo Y,
Wang P,
Patel T,
Jang S,
Hammelman J,
De Nooij J,
Kopunova R,
Mazzoni E,
Ruan Y,
Gifford D,
Wichterle H.
An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity. Neuron 2022 Jan 5; 110:1-16