SMN protein is required throughout life to prevent spinal muscular atrophy disease progression.
Document Type
Article
Publication Date
1-1-2022
Publication Title
Human molecular genetics
Keywords
JMG
JAX Source
Hum Mol Genet 2022 Jan 1; 31(1):82-96
Volume
31
Issue
1
First Page
82
Last Page
96
ISSN
1460-2083
PMID
34368854
DOI
https://doi.org/10.1093/hmg/ddab220
Abstract
Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~17 days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with an SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~20 days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2 days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.
Recommended Citation
Zhao X,
Feng Z,
Risher N,
Mollin A,
Sheedy J,
Ling K,
Narasimhan J,
Dakka A,
Baird J,
Ratni H,
Lutz C,
Chen K,
Naryshkin N,
Ko C,
Welch E,
Metzger F,
Weetall M.
SMN protein is required throughout life to prevent spinal muscular atrophy disease progression. Hum Mol Genet 2022 Jan 1; 31(1):82-96