Airpart: interpretable statistical models for analyzing allelic imbalance in single-cell datasets.
Document Type
Article
Publication Date
5-13-2022
Publication Title
Bioinformatics (Oxford, England)
Keywords
JMG, Alleles, Allelic Imbalance, Bayes Theorem, Computer Simulation, Models, Statistical, Software
JAX Source
Bioinformatics 2022 May 13; 38(10:2773-2780
Volume
38
Issue
10
First Page
2773
Last Page
2780
ISSN
1367-4811
PMID
35561168
DOI
https://doi.org/10.1093/bioinformatics/btac212
Abstract
MOTIVATION: Allelic expression analysis aids in detection of cis-regulatory mechanisms of genetic variation, which produce allelic imbalance (AI) in heterozygotes. Measuring AI in bulk data lacking time or spatial resolution has the limitation that cell-type-specific (CTS), spatial- or time-dependent AI signals may be dampened or not detected.
RESULTS: We introduce a statistical method airpart for identifying differential CTS AI from single-cell RNA-sequencing data, or dynamics AI from other spatially or time-resolved datasets. airpart outputs discrete partitions of data, pointing to groups of genes and cells under common mechanisms of cis-genetic regulation. In order to account for low counts in single-cell data, our method uses a Generalized Fused Lasso with Binomial likelihood for partitioning groups of cells by AI signal, and a hierarchical Bayesian model for AI statistical inference. In simulation, airpart accurately detected partitions of cell types by their AI and had lower Root Mean Square Error (RMSE) of allelic ratio estimates than existing methods. In real data, airpart identified differential allelic imbalance patterns across cell states and could be used to define trends of AI signal over spatial or time axes.
AVAILABILITY AND IMPLEMENTATION: The airpart package is available as an R/Bioconductor package at https://bioconductor.org/packages/airpart.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Recommended Citation
Mu W,
Sarkar H,
Srivastava A,
Choi K,
Patro R,
Love M.
Airpart: interpretable statistical models for analyzing allelic imbalance in single-cell datasets. Bioinformatics 2022 May 13; 38(10:2773-2780