Development of a human iPSC tool kit containing the CRISPR/CAS based Casilio system to test complex genetic circuits in cell differentiation
Document Type
Article
Publication Date
Summer 2023
Keywords
JMG
JAX Location
In: Student Reports, Summer 2023, The Jackson Laboratory
Sponsor
Rick Maser, Ph.D. and Bill Buaas, Ph.D.
Abstract
Pluripotent cells possess the ability to self-renew or differentiate into somatic cell types based on changes in gene-expression. Human induced pluripotent stem cells (hiPSCs) are somatic cells reprogrammed to become pluripotent, and can be used in vitro to help uncover differentiation processes for potential in vivo therapeutic uses. However, genes primarily responsible for differentiation are still largely unknown. Gene-editing tools that can modulate gene-expression of multiple genes simultaneously are required to better understand gene networks that drive differentiation. The CRISPR/Cas based Casilio tool kit comprises an enzymatically dead Cas9 (dCas9), a RNA-binding Pumilio/FBF (PUF) protein(s) motif fused to transcription modulators, and a reprogrammable guide RNA appended with a PUF binding site (gRNA-PBS) that can direct, and localize, the dCas9 and Pumilio complexes to desired DNA sequences in the genome. The modular nature of the Casilio system provides advantages over the traditional CRISPR transcriptional inhibitory or activating methods by enabling the concomitant repression of certain genes while activating others. In this proof-of-concept experiment, we genetically engineer a novel hiPSC line to endogenously express Casilio proteins through lentiviral-based infection, and determine if the overexpression of the endogenous transcription factor NEUROGENIN-2 can drive hiPSCs from an immortal pluripotent state to a differentiated neuron in vitro. Our goal is for this novel transgenic hiPSC line, expressing all Casilio components excluding the reprogrammable gRNA-PBS, to enable researchers to quickly test complex gene-expression networks and their functions in cellular processes, tapping into the potential for in vivo iPSC-derived cell therapeutic uses.
Recommended Citation
Bai, Annika, "Development of a human iPSC tool kit containing the CRISPR/CAS based Casilio system to test complex genetic circuits in cell differentiation" (2023). Summer and Academic Year Student Reports. 2741.
https://mouseion.jax.org/strp/2741