GeneWeaver: finding consilience in heterogeneous cross-species functional genomics data.

Document Type

Article

Publication Date

10-2015

JAX Source

Mamm Genome 2015 Oct; 26(9-10):556-66.

Volume

26

Issue

9-10

First Page

556

Last Page

566

ISSN

1432-1777

PMID

26092690

Abstract

A persistent challenge lies in the interpretation of consensus and discord from functional genomics experimentation. Harmonizing and analyzing this data will enable investigators to discover relations of many genes to many diseases, and from many phenotypes and experimental paradigms to many diseases through their genomic substrates. The GeneWeaver.org system provides a platform for cross-species integration and interrogation of heterogeneous curated and experimentally derived functional genomics data. GeneWeaver enables researchers to store, share, analyze, and compare results of their own genome-wide functional genomics experiments in an environment containing rich companion data obtained from major curated repositories, including the Mouse Genome Database and other model organism databases, along with derived data from highly specialized resources, publications, and user submissions. The data, largely consisting of gene sets and putative biological networks, are mapped onto one another through gene identifiers and homology across species. A versatile suite of interactive tools enables investigators to perform a variety of set analysis operations to find consilience among these often noisy experimental results. Fast algorithms enable real-time analysis of large queries. Specific applications include prioritizing candidate genes for quantitative trait loci, identifying biologically valid mouse models and phenotypic assays for human disease, finding the common biological substrates of related diseases, classifying experiments and the biological concepts they represent from empirical data, and applying patterns of genomic evidence to implicate novel genes in disease. These results illustrate an alternative to strict emphasis on replicability, whereby researchers classify experimental results to identify the conditions that lead to their similarity. Mamm Genome 2015 Oct; 26(9-10):556-66.

Share

COinS