Document Type
Article
Publication Date
8-24-2018
JAX Source
Skelet Muscle 2018 Aug 24; 8(1):27
Volume
8
Issue
1
First Page
27
Last Page
27
ISSN
2044-5040
PMID
30139374
DOI
https://doi.org/10.1186/s13395-018-0169-7
Abstract
BACKGROUND: Pax7 is a transcription factor involved in the specification and maintenance of muscle stem cells (MuSCs). Upon injury, MuSCs leave their quiescent state, downregulate Pax7 and differentiate, contributing to skeletal muscle regeneration. In the majority of regeneration studies, MuSCs are isolated by fluorescence-activated sorting (FACS), based on cell surface markers. It is known that MuSCs are a heterogeneous population and only a small percentage of isolated cells are true stem cells that are able to self-renew. A strong Pax7 reporter line would be valuable to study the in vivo behavior of Pax7-expressing stem cells.
METHODS: We generated and characterized the muscle properties of a new transgenic Pax7EGFP mouse. Utilizing traditional immunofluorescence assays, we analyzed whole embryos and muscle sections by fluorescence microscopy, in addition to whole skeletal muscles by 2-photon microscopy, to detect the specificity of EGFP expression. Skeletal muscles from Pax7EGFP mice were also evaluated in steady state and under injury conditions. Finally, MuSCs-derived from Pax7EGFP and control mice were sorted and analyzed by FACS and their myogenic activity was comparatively examined.
RESULTS: Our studies provide a new Pax7 reporter line with robust EGFP expression, detectable by both flow cytometry and fluorescence microscopy. Pax7EGFP-derived MuSCs have identical properties to that of wild-type MuSCs, both in vitro and in vivo, excluding any positional effect due to the transgene insertion. Furthermore, we demonstrated high specificity of EGFP to label MuSCs in a temporal manner that recapitulates the reported Pax7 expression pattern. Interestingly, immunofluorescence analysis showed that the robust expression of EGFP marks cells in the satellite cell position of adult muscles in fixed and live tissues.
CONCLUSIONS: This mouse could be an invaluable tool for the study of a variety of questions related to MuSC biology, including but not limited to population heterogeneity, polarity, aging, regeneration, and motility, either by itself or in combination with mice harboring additional genetic alterations.
Recommended Citation
Tichy E,
Sidibe D,
Greer C,
Oyster N,
Rompolas P,
Rosenthal N,
Blau H,
Mourkioti F.
A robust Pax7EGFP mouse that enables the visualization of dynamic behaviors of muscle stem cells. Skelet Muscle 2018 Aug 24; 8(1):27
Comments
This open access article is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)