MEK inhibition reprograms CD8 + T lymphocytes into memory stem cells with potent antitumor effects

Document Type

Article

Publication Date

1-2021

Keywords

JGM, JAXCC

JAX Source

Nat Immunol 2021 Jan; 22(1):53-66

Volume

22

Issue

1

First Page

53

Last Page

66

ISSN

1529-2916

PMID

33230330

DOI

https://doi.org/10.1038/s41590-020-00818-9

Abstract

Regenerative stem cell-like memory (TSCM) CD8+ T cells persist longer and produce stronger effector functions. We found that MEK1/2 inhibition (MEKi) induces TSCM that have naive phenotype with self-renewability, enhanced multipotency and proliferative capacity. This is achieved by delaying cell division and enhancing mitochondrial biogenesis and fatty acid oxidation, without affecting T cell receptor-mediated activation. DNA methylation profiling revealed that MEKi-induced TSCM cells exhibited plasticity and loci-specific profiles similar to bona fide TSCM isolated from healthy donors, with intermediate characteristics compared to naive and central memory T cells. Ex vivo, antigenic rechallenge of MEKi-treated CD8+ T cells showed stronger recall responses. This strategy generated T cells with higher efficacy for adoptive cell therapy. Moreover, MEKi treatment of tumor-bearing mice also showed strong immune-mediated antitumor effects. In conclusion, we show that MEKi leads to CD8+ T cell reprogramming into TSCM that acts as a reservoir for effector T cells with potent therapeutic characteristics.

Share

COinS