Document Type

Article

Publication Date

1-1-2023

Keywords

JMG

JAX Source

Front Pharmacol. 2023;14:1303207

ISSN

1663-9812

PMID

38111383

DOI

https://doi.org/10.3389/fphar.2023.1303207

Grant

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. These studies were funded partially by an NIH/NIDA grant (U01DA051373, Optimization of Novel Thiolesters as a Therapeutic Strategy for Combating Opioid Overdoses and Abuse) to SL. In addition, JsB received funding from DA059060 and DA048890

Abstract

The molecular mechanisms underlying the acquisition of addiction/dependence on morphine may result from the ability of the opioid to diminish the transport of L-cysteine into neurons via inhibition of excitatory amino acid transporter 3 (EAA3). The objective of this study was to determine whether the co-administration of the cell-penetrant L-thiol ester, L-cysteine ethyl ester (L-CYSee), would reduce physical dependence on morphine in male Sprague Dawley rats. Injection of the opioid-receptor antagonist, naloxone HCl (NLX; 1.5 mg/kg, IP), elicited pronounced withdrawal phenomena in rats which received a subcutaneous depot of morphine (150 mg/kg) for 36 h and were receiving a continuous infusion of saline (20 μL/h, IV) via osmotic minipumps for the same 36 h period. The withdrawal phenomena included wet-dog shakes, jumping, rearing, fore-paw licking, 360° circling, writhing, apneas, cardiovascular (pressor and tachycardia) responses, hypothermia, and body weight loss. NLX elicited substantially reduced withdrawal syndrome in rats that received an infusion of L-CYSee (20.8 μmol/kg/h, IV) for 36 h. NLX precipitated a marked withdrawal syndrome in rats that had received subcutaneous depots of morphine (150 mg/kg) for 48 h) and a co-infusion of vehicle. However, the NLX-precipitated withdrawal signs were markedly reduced in morphine (150 mg/kg for 48 h)-treated rats that began receiving an infusion of L-CYSee (20.8 μmol/kg/h, IV) at 36 h. In similar studies to those described previously, neither L-cysteine nor L-serine ethyl ester (both at 20.8 μmol/kg/h, IV) mimicked the effects of L-CYSee. This study demonstrates that 1) L-CYSee attenuates the development of physical dependence on morphine in male rats and 2) prior administration of L-CYSee reverses morphine dependence, most likely by intracellular actions within the brain. The lack of the effect of L-serine ethyl ester (oxygen atom instead of sulfur atom) strongly implicates thiol biochemistry in the efficacy of L-CYSee. Accordingly, L-CYSee and analogs may be a novel class of therapeutics that ameliorate the development of physical dependence on opioids in humans.

Comments

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Share

COinS